精英家教网 > 高中数学 > 题目详情

【题目】某投资公司现提供两种一年期投资理财方案,一年后投资盈亏的情况如表:

投资股市

获利40%

不赔不赚

亏损20%

购买基金

获利20%

不赔不赚

亏损10%

概率P

概率P

p

q

(I)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“购买基金”,若一年后他们中至少有一人盈利的概率大于 ,求p的取值范围;
(II)某人现有10万元资金,决定在“投资股市”和“购买基金”这两种方案中选出一种,若购买基金现阶段分析出 ,那么选择何种方案可使得一年后的投资收益的数学期望值较大?

【答案】解:(I)设事件A为“甲投资股市且盈利”,事件B为“乙购买基金且盈利”,事件C为“一年后甲、乙中至少有一人盈利”,则 ,其中A,B相互独立 因为 ,则 ,即
解得
又因为 且q≥0,所以 ,故
(II)假设此人选择“投资股市”,记ξ为盈利金额(单位万元),则ξ的分布列为:

ξ

4

0

﹣2

P


假设此人选择“购买基金”,记η为盈利金额(单位万元),则η的分布列为:

η

2

0

﹣1

P


因为 ,即Eξ>Eη,所以应选择“投资股市”可使得一年后的投资收益的数学期望值较大
【解析】(I)设事件A为“甲投资股市且盈利”,事件B为“乙购买基金且盈利”,事件C为“一年后甲、乙中至少有一人盈利”,则 ,其中A,B相互独立.利用相互独立事件、互斥事件的概率计算公式即可得出概率.(II)假设此人选择“投资股市”,记ξ为盈利金额(单位万元),可得ξ的分布列为.假设此人选择“购买基金”,记η为盈利金额(单位万元),可得η的分布列,计算即可比较出大小关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy 中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),离心率e=
(1)求椭圆G 的标准方程;
(2)已知直线l1:y=kx+m1与椭圆G交于 A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示. ①证明:m1+m2=0;
②求四边形ABCD 的面积S 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如右表:(单位:人)

几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50


(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望 EX. 附表及公式

P(k2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n项和Sn的取值范围是(
A.[ ,2)
B.[ ,2]
C.[ ,1)
D.[ ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|2x+2|.
(1)解不等式f(x)>5;
(2)若关于x的方程 =a的解集为空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m、n是两条不同的直线,α、β是两个不同的平面,给出下列命题: ①若α⊥β,m∥α,则m⊥β;
②若m⊥α,n⊥β,且m⊥n,则α⊥β;
③若m⊥β,m∥α,则α⊥β;
④若m∥α,n∥β,且m∥n,则α∥β.
其中正确命题的序号是(
A.①④
B.②③
C.②④
D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以A,B,C,D,E,F为顶点的多面体中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.
(Ⅰ)请在图中作出平面α,使得DEα,且BF∥α,并说明理由;
(Ⅱ)求直线EF与平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数).

(1)判断函数的奇偶性;

(2)若不等式时有解,求实数的取值范围;

(3)设,是否存在正数,使得对于区间上的任意三个实数,都存在以为边长的三角形?若存在,试求出这样的的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①存在实数α使
②直线 是函数y=sinx图象的一条对称轴.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,则tanα>tanβ.
其中正确命题的题号为( )
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

同步练习册答案