【题目】在直角坐标系xOy中,直线l1的参数方程为 ,(t为参数),直线l2的参数方程为 ,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣ =0,M为l3与C的交点,求M的极径.
【答案】
(1)解:∵直线l1的参数方程为 ,(t为参数),
∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;
又直线l2的参数方程为 ,(m为参数),
同理可得,直线l2的普通方程为:x=﹣2+ky②;
联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4(x≠±2);
(2)解:∵l3的极坐标方程为ρ(cosθ+sinθ)﹣ =0,
∴其普通方程为:x+y﹣ =0,
联立 得: ,
∴ρ2=x2+y2= + =5.
∴l3与C的交点M的极径为ρ= .
【解析】解:(1)分别消掉参数t与m可得直线l1与直线l2的普通方程为y=k(x﹣2)①与x=﹣2+ky②;联立①②,消去k可得C的普通方程为x2﹣y2=4;(2)将l3的极坐标方程为ρ(cosθ+sinθ)﹣ =0化为普通方程:x+y﹣ =0,再与曲线C的方程联立,可得 ,即可求得l3与C的交点M的极径为ρ= .
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分别是AD,PB的中点.
(Ⅰ)求证:PD∥平面OCM;
(Ⅱ)若AP与平面PBD所成的角为60°,求线段PB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O处向东走1 km是储备基地的边界上的点A,接着向东再走7 km到达公路上的点B;从基地中心O向正北走8 km到达公路的另一点C.现准备在储备基地的边界上选一点D,修建一条由D通往公路BC的专用线DE,求DE的最短距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点. (Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:B1F∥平面A1BE;
(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点.
(1)求圆A的方程;
(2)当|MN|=2时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求分别满足下列条件的直线l的方程:
(1)斜率是,且与两坐标轴围成的三角形的面积是6;
(2)经过两点A(1,0)、B(m,1);
(3)经过点(4,-3),且在两坐标轴上的截距的绝对值相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,正方体ABCD-A1B1C1D1中,点E,F分别为D1C1,C1B1的中点,
AC∩BD=P,A1C1∩EF=Q.求证:
(1)D,B,E,F四点共面.
(2)若A1C交平面BDEF于点R,则P,Q,R三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下,对它们抢到的红包个数进行统计,得到如表数据:
型号 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(个) | 4 | 3 | 8 | 6 | 12 |
乙品牌(个) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果抢到红包个数超过5个的手机型号为“优”,否则“非优”,请据此判断是否有85%的把握认为抢到的红包个数与手机品牌有关?
(Ⅱ)如果不考虑其它因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.
①求在型号Ⅰ被选中的条件下,型号Ⅱ也被选中的概率;
②以X表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量X的分布列及数学期望E(X).
下面临界值表供参考:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:K2= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com