精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,直线l1的参数方程为 ,(t为参数),直线l2的参数方程为 ,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣ =0,M为l3与C的交点,求M的极径.

【答案】
(1)解:∵直线l1的参数方程为 ,(t为参数),

∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;

又直线l2的参数方程为 ,(m为参数),

同理可得,直线l2的普通方程为:x=﹣2+ky②;

联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4(x≠±2);


(2)解:∵l3的极坐标方程为ρ(cosθ+sinθ)﹣ =0,

∴其普通方程为:x+y﹣ =0,

联立 得:

∴ρ2=x2+y2= + =5.

∴l3与C的交点M的极径为ρ=


【解析】解:(1)分别消掉参数t与m可得直线l1与直线l2的普通方程为y=k(x﹣2)①与x=﹣2+ky②;联立①②,消去k可得C的普通方程为x2﹣y2=4;(2)将l3的极坐标方程为ρ(cosθ+sinθ)﹣ =0化为普通方程:x+y﹣ =0,再与曲线C的方程联立,可得 ,即可求得l3与C的交点M的极径为ρ=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分别是AD,PB的中点.
(Ⅰ)求证:PD∥平面OCM;
(Ⅱ)若AP与平面PBD所成的角为60°,求线段PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了适应市场需要某地准备建一个圆形生猪储备基地(如右图)它的附近有一条公路从基地中心O处向东走1 km是储备基地的边界上的点A接着向东再走7 km到达公路上的点B从基地中心O向正北走8 km到达公路的另一点C.现准备在储备基地的边界上选一点D修建一条由D通往公路BC的专用线DEDE的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABCA(2,-1)B(4,3)C(3,-2)

(1)BC边上的高所在直线的一般式方程;

(2)ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点. (Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:B1F∥平面A1BE;
(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点A(-1,2)为圆心的圆与直线l1x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于MN两点,QMN的中点.

(1)求圆A的方程;

(2)当|MN|=2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求分别满足下列条件的直线l的方程:

(1)斜率是,且与两坐标轴围成的三角形的面积是6;

(2)经过两点A(1,0)、B(m,1);

(3)经过点(4,-3),且在两坐标轴上的截距的绝对值相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,正方体ABCD-A1B1C1D1中,点E,F分别为D1C1C1B1的中点,

AC∩BD=PA1C1∩EF=Q.求证:

(1)D,B,E,F四点共面.

(2)若A1C交平面BDEF于点R,则P,Q,R三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下,对它们抢到的红包个数进行统计,得到如表数据:

型号
手机品牌

甲品牌(个)

4

3

8

6

12

乙品牌(个)

5

7

9

4

3

(Ⅰ)如果抢到红包个数超过5个的手机型号为“优”,否则“非优”,请据此判断是否有85%的把握认为抢到的红包个数与手机品牌有关?
(Ⅱ)如果不考虑其它因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.
①求在型号Ⅰ被选中的条件下,型号Ⅱ也被选中的概率;
②以X表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量X的分布列及数学期望E(X).
下面临界值表供参考:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:K2=

查看答案和解析>>

同步练习册答案