【题目】已知椭圆C: + =1(α>b>0)的右焦点到直线x﹣y+3 =0的距离为5,且椭圆的一个长轴端点与一个短轴端点间的距离为 .
(1)求椭圆C的方程;
(2)在x轴上是否存在点Q,使得过Q的直线与椭圆C交于A、B两点,且满足 + 为定值?若存在,请求出定值,并求出点Q的坐标;若不存在,请说明理由.
【答案】
(1)解:右焦点F(c,0)到直线x﹣y+3 =0的距离为5,
可得 =5,解得c=2 ,
由题意可得a2+b2=10,又a2﹣b2=8,
解得a=3,b=1,
即有椭圆方程为 +y2=1
(2)解:假设在x轴上存在点Q(m,0),使得过Q的直线与椭圆C交于A、B两点,
且满足 + 为定值.
设过Q的直线的参数方程为 (t为参数),
代入椭圆方程x2+9y2=9,可得t2(cos2α+9sin2α)+2mcosαt+m2﹣9=0,
可得△=(2mcosα)2﹣4(cos2α+9sin2α)(m2﹣9)>0,
t1t2= ,t1+t2=﹣ ,
则 + = + = =
= 为定值,
即有2(m2+9)=18(9﹣m2),解得m=± ,
代入判别式显然成立.
故在x轴上存在点Q(± ,0),使得过Q的直线与椭圆C交于A、B两点,
且满足 + 为定值10
【解析】(1)运用点到直线的距离公式,以及两点的距离公式和a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)假设在x轴上存在点Q(m,0),使得过Q的直线与椭圆C交于A、B两点,且满足 + 为定值.设过Q的直线的参数方程为 (t为参数),代入椭圆方程,运用判别式大于0和韦达定理,化简整理,再由同角的平方关系,解方程可得m,即可判断存在Q.
科目:高中数学 来源: 题型:
【题目】某粮库拟建一个储粮仓如图所示,其下部是高为2的圆柱,上部是母线长为2的圆锥,现要设计其底面半径和上部圆锥的高,若设圆锥的高为,储粮仓的体积为.
(1)求关于的函数关系式;(圆周率用表示)
(2)求为何值时,储粮仓的体积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,
求证:(1)GH∥面ABC
(2)平面EFA1∥平面BCHG.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过圆O外一点P作圆的切线PC,切点为C,割线PAB、割线PEF分别交圆O于A与B、E与F.已知PB的垂直平分线DE与圆O相切.
(1)求证:DE∥BF;
(2)若 ,DE=1,求PB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C对边分别为a,b,c,且c<a,已知 =﹣2,tanB=2 ,b=3.
(1)求a和c的值;
(2)求sin(B﹣C)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|3≤≤27},B={x|>1}.
(1)分别求A∩B,()∪A;
(2)已知集合C={x|1<x<a},若CA,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com