分析 当x≥2时,f(x)=-6+2x≥-2.当x<2,f(x)=x2-ax+3=(x-$\frac{a}{2}$)2+3-$\frac{{a}^{2}}{4}$,由此利用分尖讨论思想能求出实数a的取值范围.
解答 解:∵函数$f(x)=\left\{\begin{array}{l}{x^2}-ax+3\;\;\;\;\;\;x<2\\-6+{2^x}\;\;\;\;\;\;\;\;\;\;x≥2\end{array}\right.$的值域为[-2,+∞),
当x≥2时,f(x)=-6+2x≥-2.
当x<2,f(x)=x2-ax+3=(x-$\frac{a}{2}$)2+3-$\frac{{a}^{2}}{4}$,
当$\frac{a}{2}$=2时,f(x)=(x-$\frac{a}{2}$)2+3-$\frac{{a}^{2}}{4}$≥3-$\frac{{a}^{2}}{4}$≥-2,
解得-2$\sqrt{5}$≤a≤2$\sqrt{5}$,a=4∈[-2$\sqrt{5}$,2$\sqrt{5}$],故a=4成立;
当$\frac{a}{2}$<2时,f(x)=(x-$\frac{a}{2}$)2+3-$\frac{{a}^{2}}{4}$≥3-$\frac{{a}^{2}}{4}$≥-2,
解得-2$\sqrt{5}$≤a<4.
当$\frac{a}{2}$>2时,f(x)=(x-$\frac{a}{2}$)2+3-$\frac{{a}^{2}}{4}$≥(2-$\frac{a}{2}$)2+3-$\frac{{a}^{2}}{4}$≥-2,
解得4<a$≤\frac{9}{2}$.
综上所述,实数a的取值范围是[-2$\sqrt{5}$,$\frac{9}{2}$].
故答案为:[-2$\sqrt{5}$,$\frac{9}{2}$].
点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com