精英家教网 > 高中数学 > 题目详情

已知函数f(x)在R上为奇函数,且满足f(x+2)=-f(x),当x∈(0,2)时f(x)=x2,则f(2011)的值是


  1. A.
    1
  2. B.
    -1
  3. C.
    2
  4. D.
    -2
B
分析:由f(x+2)=-f(x),可得f(x)是以4为周期的周期函数;由奇函数f(x)在x∈(0,2)时的解析式f(x)=x2,可求f(2011)的值.
解答:∵f(x+2)=-f(x),
∴f[(x+2)+2]=-f(x+2)=f(x),
∴f(x)是以4为周期的周期函数;
∴f(2011)=f(2008+3)=f(3)=f(-1+4)=f(-1),
∵x∈(0,2)时f(x)=x2
∴f(1)=1.
又函数f(x)在R上为奇函数,
∴f(-1)=-f(1)=-1.
∴f(2011)=-1.
故选B.
点评:本题考查函数的周期性,着重考查对周期概念的理解与应用及函数的奇偶性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足y=f(x)=2f(2-x)+ex-1+x2,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )
A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足2f(x)+f(1-x)=3x2-2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程是
2x-y-1=0
2x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上有定义,对任意实数a>0和任意实数x都有f(ax)=a﹒f(x).
(1)证明:f(0)=0
(2)若f(1)=1,求g(x)=
1f(x)
+f(x).(x>0)
的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上可导,函数F(x)=f(x2-4)+f(4-x2),则F′(2)=
 

查看答案和解析>>

同步练习册答案