精英家教网 > 高中数学 > 题目详情
函数y=f(x)与y=g(x)的图象如图所示,则函数y=f(x)•g(x)的图象可能是(

A.
B.
C.
D.
【答案】分析:本题考查的知识点是函数的图象,由已知中函数y=f(x)与y=g(x)的图象我们不难分析,当函数y=f(x)•g(x)有两个零点M,N,我们可以根据函数y=f(x)与y=g(x)的图象中函数值的符号,分别讨论(-∞,M)(M,0)(0,N)(N,+∞)四个区间上函数值的符号,以确定函数的图象.
解答:解:∵y=g(x)的有两个零点,且x=0时,函数值不存在
∴函数y=f(x)•g(x)也有两个零点M,N,且x=0时,函数值不存在
当x∈(-∞,M)时,y<0;
当x∈(M,0)时,y>0;
当x∈(0,N)时,y<0;
当x∈(N,+∞)时,y>0;
只有A中的图象符合要求
故选A
点评:要根据已知两个函数的图象,判断未知函数的图象,我们关键是要根据已知条件中的函数的图象,分析出未知函数零点的个数,及在每个区间上的符号,然后对答案中的图象逐一进行判断,然后选出符合分析结果的图象.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知函数y=f(x)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2,则函数y=f(x)与y=log3|x|的图象的交点的个数为是
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数y=f(x)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2,则函数y=f(x)与y=log3|x|的图象的交点的个数为是______.

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省双鸭山一中高三(上)期中数学试卷(文科)(解析版) 题型:填空题

已知函数y=f(x)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2,则函数y=f(x)与y=log3|x|的图象的交点的个数为是   

查看答案和解析>>

同步练习册答案