精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c,直线l1:y=-t2+8t(其中0≤t≤2,t为常数);l2:x=2.若直线l1、l2与函数f(x)的图象以及l1、y轴所围成的封闭图形如阴影所示.
(1)求a,b,c的值;
(2)求阴影面积S关于t的函数S(t)的解析式;
(3)求函数S(t)的最大值、最小值.
分析:(1)根据题意建立关于a、b、c的方程组,解之即可得到a、b、c的值;
(2)联解方程组得出直线l1与f(x)的图象的交点坐标,从而得到S(t)关于t的积分函数关系式,利用定积分计算公式即可算出S(t)=-
4
3
t3+10t2-16t+
40
3

(3)求导数:S'(t)=-4t2+20t-16,列表给出导数的分布与原函数的单调性的关系,得到S(t)的单调增区间和减区间,从而得到函数S(t)的最大值、最小值.
解答:解:(1)根据题意,结合图形可得
c=0
a•82+b•8+c=0
4ac-b2
4a
=16
,解之得:
a=-1
b=8
c=0

∴函数f(x)的解析式为f(x)=-x2+8x
(2)由
y=-t2+8t
y=-x2+8x
,得x2-8x-t(t-8)=0,
∴x1=t,x2=8-t,
∵0≤t≤2.…(6分)
∴直线l1与函数f(x)的图象的交点坐标为(t,-t2+8t),
由定积分的几何意义知:
S(t)=
t
0
[(-t2+8t)-(-x2+8x)]dx+
2
t
[(-x2+8x)-(-t2+8t)]dx

=-
4
3
t3+10t2-16t+
40
3
,(其中0≤t≤2)…(9分)
所以S(t)=-
4
3
t3+10t2-16t+
40
3
(0≤t≤2)
(3)由(2)知,S'(t)=-4t2+20t-16,
令S'(t)=-4(t-1)(t-4)=0,得t=1,或t=4.
因此,当S'(t)<0时,即有t>4,或t<1;…(11分)
当S'(t)>0时,有1<t<4.所以,当t在[0,2]内变化时,S'(t),S(t)的变化情况如下表:
t [0,1) 1 (1,4]
S'(t) - 0 +
S(t) 单调递减 6 单调递增
因此,当时,S(t)有极小值,且极小值为S(1)=6,
又由于S(0)=
40
3
S(2)=
32
3
…(14分)
因此S(t)=-
4
3
t3+10t2-16t+
40
3
在[0,2]上的最大值是
40
3
,最小值是6.
点评:本题着重考查了二次函数的图象与性质、定积分的几何意义和定积分计算公式和利用导数研究函数的单调性与最值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案