精英家教网 > 高中数学 > 题目详情
已知f(x)=logax(a>0,a≠1),设数列f(a1),f(a2),f(a3),…,f(an)…是首项为4,公差为2的等差数列.
(I)设a为常数,求证:{an}成等比数列;
(II)设bn=anf(an),数列{bn}前n项和是Sn,当a=
2
时,求Sn
分析:(I)先利用条件求出f(an)的表达式,进而求出{an}的通项公式,再用定义来证{an}是等比数列即可;
(II)先求出数列{bn}的通项公式,再对数列{bn}利用错位相减法求和即可.
解答:证明:(I)f(an)=4+(n-1)×2=2n+2,
即logaan=2n+2,可得an=a2n+2
an
an-1
=
a2n+2
a2(n-1)+2
=
a2n+2
a2n
=a2(n≥2,n∈N*)
为定值.
∴{an}为等比数列.(5分)
(II)解:bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2.(7分)
a=
2
时,bn=anf(an)=(2n+2)(
2
)2n+2=(n+1)2n+2
.(8分)
Sn=2×23+3×24+4×25++(n+1)•2n+2
2Sn=2×24+3×25+4×26++n•2n+2+(n+1)•2n+3
①-②得-Sn=2×23+24+25++2n+2-(n+1)•2n+3(12分)
=16+
24(1-2n-1)
1-2
-(n+1)•2n+3=16+2n+3-24-n•2n+3-2n+3
∴Sn=n•2n+3.(14分)
点评:本题的第二问考查了数列求和的错位相减法.错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log
(4x+1)
4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(log
 
4
1
2
)的值为
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R上的奇函数,且当x>0时有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log 
1
4
x,那么f(-
1
2
)的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
log(4x+1)4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

同步练习册答案