精英家教网 > 高中数学 > 题目详情
空间四边形ABCD中,E、F、G、H顺次为边AB、BC、CD、DA的重点,且EG=3,FH=4,则AC2+BD2=
50
50
分析:根据平行四边形对角线的平方和等于四边的平方和,可得答案.
解答:解:∵点E,F,G,H分别为四边形ABCD的边AB,BC,CD,DA的中点,
∴HG、GF、FE、EH分别为△ADC、△BDC、△ABC、△ABD的中位线.
EG=3,FH=4,
∴EF=HG=
1
2
AC;
HE=FG=
1
2
×BD,
AC2+BD2=4(FG2+FE2)=2(GF2+EH2+EF2+HG2)=2(FH2+GE2)=50
故答案为:50.
点评:三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用,本题解题的关键是将四边形分为四个三角形,然后利用中位线定理解答
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
求证:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G为△ADC的重心,试在线段AE上确定一点F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间四边形ABCD中,AD=BC=2,E、F分别是AB、CD的中点,EF=
2
,求AD与BC所成角的大小(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,空间四边形ABCD中,AB、BC、CD的中点分别是P、Q、R,且PQ=
3
,QR=1,PR=2
,那么异面直线BD和PR所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形ABCD中,AB=CD,且AB与CD成60°角,E、F分别为AC,BD的中点,则EF与AB所成角的度数为
60°或30°
60°或30°

查看答案和解析>>

同步练习册答案