精英家教网 > 高中数学 > 题目详情
定义在R上的奇函数f(x)以2为周期,则f(1)+f(2)+f(3)的值是(  )
分析:根据函数的周期性和奇偶性得到f(3)=f(-1)=-f(1)、f(2)=f(0)=0,从而可求f(1)+f(2)+f(3)
解答:解:因为函数以2为周期,
所以f(3)=f(-1),f(2)=f(0),
因为函数是定义在R上的奇函数,
所以f(-1)=-f(1),f(0)=0,
所以f(1)+f(2)+f(3)=f(1)+f(0)-f(1)=0,
故选A.
点评:本题考察函数性质的应用,属中档题,因为题目已知中没有一个函数值,所以解题的关键是如何将所求进行转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(2x)=-2f(x),f(-1)=
1
2
,则f(2)的值为(  )
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则不等式xf(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在[0,+∞)是增函数,判断f(x)在(-∞,0)上的增减性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2010x+log2010x,则方程f(x)=0的实根的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),当x≥0时,f(x)=x3+x2,则f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步练习册答案