·ÖÎö£º£¨1£©Ö¤·¨Ò»£¬ÀûÓÃÔµãÔÚÔ²ÄÚ£¬Ô²ÐÄ×ø±ê´úÈë·½³Ì£¬·½³ÌµÄ×ó±ßСÓÚ0£¬Ö±½ÓÖ¤Ã÷F£¼0£»
Ö¤·¨¶þ£ºA¡¢CÁ½µã·Ö±ðÔÚxÖáÕý¸º°ëÖáÉÏ£®ÉèA£¨a£¬0£©£¬C£¨c£¬0£©£¬ÔòÓÐac£¼0£®ÀûÓÃx
2+y
2+Dx+Ey+F=0£¬µ±y=0ʱ£¬¿ÉµÃ
x
2+Dx+F=0£¬ÆäÖз½³ÌµÄÁ½¸ù·Ö±ðΪµãAºÍµãCµÄºá×ø±ê£¬ÍƳöx
Ax
C=ac=F£®µÃµ½½áÂÛ£®
£¨2£©ËıßÐÎABCDµÄÃæ»ýΪ8£¬¶Ô½ÇÏßACµÄ³¤Îª2£¬ÇÒ
•=0£¬µÃµ½|BD|=8£¬ÍƳör=4£¬¼´¿ÉÇóD
2+E
2-4F掙术
£¨3£©ÉèA£¬B£¬C£¬DµÄ×ø±ê£¬Çó³öµãGµÄ×ø±êΪ
(£¬)£¬¼´
=(£¬)£¬Í¨¹ýAB¡ÍOH£¬Ö¤Ã÷G¡¢O¡¢HÈýµã¹²Ïߣ¬Ö»ÐèÖ¤
•=0¼´¿É£®
½â´ð£º½â£º£¨1£©Ö¤·¨Ò»£ºÓÉÌâÒ⣬ԵãO±Ø¶¨ÔÚÔ²MÄÚ£¬¼´µã£¨0£¬0£©´úÈë·½³Ìx
2+y
2+Dx+Ey+F=0µÄ×ó±ßºóµÄֵСÓÚ0£¬
ÓÚÊÇÓÐF£¼0£¬¼´Ö¤£®¡£¨4·Ö£©
Ö¤·¨¶þ£ºÓÉÌâÒ⣬²»ÄÑ·¢ÏÖA¡¢CÁ½µã·Ö±ðÔÚxÖáÕý¸º°ëÖáÉÏ£®ÉèÁ½µã×ø±ê·Ö±ðΪ
A£¨a£¬0£©£¬C£¨c£¬0£©£¬ÔòÓÐac£¼0£®
¶ÔÓÚÔ²·½³Ìx
2+y
2+Dx+Ey+F=0£¬µ±y=0ʱ£¬¿ÉµÃx
2+Dx+F=0£¬ÆäÖз½³ÌµÄÁ½¸ù·Ö±ðΪµãAºÍµãCµÄºá×ø±ê£¬ÓÚÊÇÓÐx
Ax
C=ac=F£®
ÒòΪac£¼0£¬¹ÊF£¼0£®¡£¨4·Ö£©
£¨2£©²»ÄÑ·¢ÏÖ£¬¶Ô½ÇÏß»¥Ïà´¹Ö±µÄËıßÐÎABCDÃæ»ýS=
£¬ÒòΪS=8£¬|AC|=2£¬¿ÉµÃ|BD|=8£®¡£¨6·Ö£©
ÓÖÒòΪ
•=0£¬ËùÒÔ¡ÏAΪֱ½Ç£¬¶øÒòΪËıßÐÎÊÇÔ²MµÄÄÚ½ÓËıßÐΣ¬¹Ê|BD|=2r=8⇒r=4£®¡£¨8·Ö£©
¶ÔÓÚ·½³Ìx
2+y
2+Dx+Ey+F=0Ëù±íʾµÄÔ²£¬¿ÉÖª
+-F=r2£¬ËùÒÔD
2+E
2-4F=4r
2=64£®¡£¨10·Ö£©
£¨3£©Ö¤£ºÉèËıßÐÎËĸö¶¥µãµÄ×ø±ê·Ö±ðΪA£¨a£¬0£©£¬B£¨0£¬b£©£¬C£¨c£¬0£©£¬D£¨0£¬d£©£®
Ôò¿ÉµÃµãGµÄ×ø±êΪ
(£¬)£¬¼´
=(£¬)£®¡£¨12·Ö£©
ÓÖ
=(-A£¬B)£¬ÇÒAB¡ÍOH£¬¹ÊҪʹG¡¢O¡¢HÈýµã¹²Ïߣ¬Ö»ÐèÖ¤
•=0¼´¿É£®
¶ø
•=£¬ÇÒ¶ÔÓÚÔ²MµÄÒ»°ã·½³Ìx
2+y
2+Dx+Ey+F=0£¬
µ±y=0ʱ¿ÉµÃx
2+Dx+F=0£¬ÆäÖз½³ÌµÄÁ½¸ù·Ö±ðΪµãAºÍµãCµÄºá×ø±ê£¬
ÓÚÊÇÓÐx
Ax
C=ac=F£®¡£¨14·Ö£©
ͬÀí£¬µ±x=0ʱ£¬¿ÉµÃy
2+Ey+F=0£¬ÆäÖз½³ÌµÄÁ½¸ù·Ö±ðΪµãBºÍµãDµÄ×Ý×ø±ê£¬ÓÚÊÇÓÐy
By
D=bd=F£®
ËùÒÔ£¬
•==0£¬¼´AB¡ÍOG£®
¹ÊO¡¢G¡¢H±Ø¶¨Èýµã¹²Ïߣ®¡£¨16·Ö£©