【题目】已知三个不同平面、、和直线,下面有四个命题:
①若,,,则;
②直线上有两点到平面的距离相等,则;
③,,则;
④若直线不在平面内,,,则.
则正确命题的序号为__________.
【答案】①③
【解析】
利用面面垂直的性质定理和线面平行的性质定理判断出命题①的正误;判断出直线与的位置关系,可判断出命题②的正误;利用线面平行的性质定理和面面垂直的判定定理判断出命题③的正误;判断出直线与平面的位置关系,可判断出命题④的正误.
对于命题①,若,则存在异于直线的直线,当垂直于平面与的交线时,,又,则,,且,,,命题①正确;
对于命题②,直线上有两点到平面的距离相等,则与平行或相交,命题②错误;
对于命题③,过直线作平面,使得,,由直线与平面平行的性质定理可知,,,又,,命题③正确;
对于命题④,若直线不在平面内,,,则或,命题④错误.
因此,正确命题的序号为①③.
故答案为:①③.
科目:高中数学 来源: 题型:
【题目】(1)直线在矩阵所对应的变换下得到直线,求的方程.
(2)已知点是曲线(为参数,)上一点,为坐标原点直线的倾斜角为,求点的坐标.
(3)求不等式的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).
(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;
(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】α,β是两个不重合的平面,在下列条件中,可判断平面α,β平行的是( )
A. m,n是平面内两条直线,且,
B. 内不共线的三点到的距离相等
C. ,都垂直于平面
D. m,n是两条异面直线,,,且,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在点处的切线斜率为0.函数
(1)试用含的代数式表示;
(2)求的单调区间;
(3)令,设函数在处取得极值,记点,,证明:线段与曲线存在异于,的公共点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为(其中t为参数,).在以原点O为极点,x轴的非负半轴为极轴所建立的极坐标系中,曲线C的极坐标方程为.设直线l与曲线C相交于A,B两点.
(1)求曲线C和直线l的直角坐标方程;
(2)已知点,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com