精英家教网 > 高中数学 > 题目详情
在矩形ABCD中,AB=2,AD=1,E为BC的中点,F在边CD上,
AB
AF
=
2
,则
AE
BF
=
 
分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.
解答:解:由题意可得,
AF
=
AD
+
DF
 
AE
,=
AB
+
BE
BF
=
BC
+
CF
,且
AB
BC
BE
CF

AB
AF
=
AB
•(
AD
+
DF
)=0+
AB
DF
=|
AB
|•|
DF
|=2|
DF
|=
2
,∴|
DF
|=
2
2

又∵
AE
BF
=(
AB
+
BE
)•(
BC
+
CF
)=0+
AB
CF
+
BE
BC
+0=-|
AB
|•|
CF
|+|
BE
|•|
BC
|
=-2(2-|
DF
|)+
1
2
×1
=-4+2×
2
2
+
1
2
=-
7
2
+
2

故答案为-
7
2
+
2
点评:本题考查平面向量的数量积的运算,两个向量的加减法的法则,以及其几何意义,解题的关键是把要用的向量表示成已知向量的和的形式,属于中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=3
3
,BC=3,沿对角线BD将BCD折起,使点C移到点C′,且C′在平面ABD的射影O恰好在AB上
(1)求证:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,已知AD=2,AB=a(a>2),E、F、G、H分别是边AD、AB、BC、CD上的点,若AE=AF=CG=CH,问AE取何值时,四边形EFGH的面积最大?并求最大的面积.

查看答案和解析>>

科目:高中数学 来源:设计必修二数学北师版 北师版 题型:044

如图,已知在矩形ABCD中,A(-4,4)、D(5,7),其对角线的交点E在第一象限内且与y轴的距离为一个单位,动点P(x,y)沿矩形一边BC运动,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1-5-5,在矩形ABCD中,过A作对角线BD的垂线AP与BD交于P,过P作BC、CD的垂线PE、PF,分别与BC、CD交于E、F.

1-5-5

求证:AP3=BD·PE·PF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知在矩形ABCD中,||=.设=a, =b, =c,求|a+b+c|.

查看答案和解析>>

同步练习册答案