精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标平面中,已知点,…,,其中是正整数,对平面上任一点,记关于点的对称点,关于点的对称点,…,关于点的对称点.

1)求向量的坐标;

2)当点在曲线上移动时,点的轨迹是函数的图像,其中是以3为周期的周期函数,且当时,.求以曲线为图像的函数在上的解析式;

3)对任意偶数,用表示向量的坐标.

【答案】123

【解析】

1)先设点,由题意求出,进而得到,从而可求出向量

2)先由题意,得到是由曲线按向量平移得到的;根据图像变换,以及函数周期,即可得出结果;

3)先由关于点的对称点,关于点的对称点,得到,再由向量的运算法则,结合向量的坐标表示,以及等比数列的求和公式,即可求出结果.

1)设点,因为关于点的对称点,所以

关于点的对称点,

所以,即

因此

2)由(1

因为点在曲线上移动时,点的轨迹是函数的图像,

所以的图像由曲线向右平移个单位,再向上平移个单位得到,

因此,设曲线是函数的图像,因为是以3为周期的周期函数,

所以也是以为周期的周期函数,

时,

所以当时,

于是,当时,

3)由题意,关于点的对称点,关于点的对称点.

所以在中,的中点,的中点,

所以

因此

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4坐标系与参数方程选讲

在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线的平面直角坐标方程和直线的普通方程:

(2)若成等比数列,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C=1ab0)的左焦点分别为F1-c0),F2c0),过F2作垂直于x轴的直线l交椭圆CAB两点,满足|AF2|=c

1)椭圆C的离心率;

2MN是椭圆C短轴的两个端点,设点P是椭圆C上一点(异于椭圆C的顶点),直线MPNP分别和x轴相交于RQ两点,O为坐标原点,若|OR||OQ|=4,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥如图一)的平面展开图(如图二)中,四边形为边长等于的正方形均为正三角形,在三棱锥中:

(I)证明:平面平面

Ⅱ)若点在棱上运动,当直线与平面所成的角最大时,求二面角的余弦值.

图一

图二

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,《宋人扑枣图轴》是作于宋朝的中国古画,现收藏于中国台北故宫博物院.该作品简介:院角的枣树结实累累,小孩群来攀扯,枝桠不停晃动,粒粒枣子摇落满地,有的牵起衣角,有的捧着盘子拾取,又玩又吃,一片兴高采烈之情,跃然于绢素之上.甲、乙、丙、丁四人想根据该图编排一个舞蹈,舞蹈中他们要模仿该图中小孩扑枣的爬、扶、捡、顶四个动作,四人每人模仿一个动作.若他们采用抽签的方式来决定谁模仿哪个动作,则甲不模仿“爬”且乙不模仿“扶”的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点.

1)求椭圆C的方程;

2)设过点的直线l与椭圆C交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】混凝土具有原材料丰富、抗压强度高、耐久性好等特点,是目前使用量最大的土木建筑材料抗压强度是混凝土质量控制的重要技术参数,也是实际工程对混凝土要求的基本指标.为了解某型号某批次混凝土的抗压强度(单位: )随龄期(单位:)的发展规律,质检部门在标准试验条件下记录了10组混凝土试件在龄期分别为2,3,4,5,7,9,12,14,17,21时的抗压强度的值,并对数据作了初步处理,得到下面的散点图及一些统计量的值.

表中,.

(1)根据散点图判断哪一个适宜作为抗压强度关于龄期的回归方程类型?选择其中的一个模型,并根据表中数据,建立关于的回归方程;

(2)工程中常把龄期为28天的混凝土试件的抗压强度视作混凝土抗压强度标准值.已知该型号混凝土设置的最低抗压强度标准值为.

()试预测该批次混凝土是否达标?

()由于抗压强度标准值需要较长时间才能评定,早期预测在工程质量控制中具有重要的意义.经验表明,该型号混凝土第7天的抗压强度,与第28天的抗压强度具有线性相关关系,试估计在早期质量控制中,龄期为7天的试件需达到的抗压强度.

: ,,参考数据: ,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程,

1)求直线和圆的直角坐标方程;

3)设圆与直线交于点,若点的坐标为,求,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100个零件作为样本,测量其直径后,整理得到如表:

直径/

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的频率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备性能等级为甲;仅满足其中两个,则设备性能等级为乙;若仅满足其中一个,则设备性能等级为丙;若全部不满足,则设备性能等级为丁.试判断设备的性能等级.

2)将直径小于等于或直径大于的零件认为是次品.

i)从设备的生产流水线上任意抽取2个零件,计算其中次品个数的数学期望

ii)从样本中任意抽取2个零件,计算其中次品个数的数学期望

查看答案和解析>>

同步练习册答案