精英家教网 > 高中数学 > 题目详情

【题目】边长为的等边三角形内任一点到三边距离之和为定值,这个定值等于;将这个结论推广到空间是:棱长为的正四面体内任一点到各面距离之和等于________________.(具体数值)

【答案】

【解析】

三角形内任意一点到三边距离和为定值是利用三角形面积相等得到的,类比:可利用四面体的体积相等求得棱长为a的正四面体内任意一点到各个面的距离之和.

解:边长为a的等边三角形内任意一点到三边距离之和是由该三角形的面积相等得到的,

由此可以推测棱长为a的正四面体内任意一点到各个面的距离之和可由体积相等得到.

方法如下,如图,

在棱长为a的正四面体内任取一点PP到四个面的距离分别为h1h2h3h4

四面体ABCD的四个面的面积相等,均为,高为

由体积相等得:

所以

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所有抽取的30岁以上的网民中利用分层抽样抽取5人,

求这5人中经常使用、偶尔或不用共享单车的人数;

从这5人中,在随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图所示.

(1)求函数的解析式;

(2)将函数的图象向右平移个单位,得到的图象,求直线

函数的图象在内所有交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖一次.抽奖方法是:从装有标号为个红球和标号为个白球的箱中,随机摸出个球,若摸出的两球号码相同,可获一等奖;若两球颜色不同且号码相邻,可获二等奖,其余情况获三等奖.已知某顾客参与抽奖一次.

Ⅰ)求该顾客获一等奖的概率;

Ⅱ)求该顾客获三获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面是矩形,侧面是正三角形,.

(1)求证:平面平面

(2)若中点,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂拟建一座平面图为矩形,面积为,高度一定的三段污水处理池(如图),由于受地形限制,其长、宽都不超过,如果池的外壁的建造费单价为,池中两道隔壁墙(与宽边平行)的建造费单价为,池底的建造费单价为.设水池的长为,总造价为.

1)求的表达式;

2)水池的长与宽各是多少时,总造价最低,并求出这个最低造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱中,已知分别为的中点,点上,且求证:

(1)直线平面

(2)直线平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),其中为自然对数的底数.

(1)讨论函数的单调性;

(2)已知 为整数,若对任意,都有恒成立,求的最大值.

查看答案和解析>>

同步练习册答案