精英家教网 > 高中数学 > 题目详情

【题目】已知平面区域D由以A(2,4)、B(5,2)、C(3,1)为顶点的三角形内部和边界组成,若在区域D上有无穷多个点(x,y)可使目标函数z=x+my取得最小值,则m=

【答案】
【解析】解:(方法一)依题意,满足已知条件的三角形如图所示:
令z=0,可得直线x+my=0的斜率为﹣
结合可行域可知当直线x+my=0与直线AC平行时,
线段AC上的任意一点都可使目标函数z=x+my取得最小值,
而直线AC的斜率为 =﹣3,
所以﹣ =﹣3,解得m=
(方法二)依题意,2+4m=5+2m<3+m①,
或2+4m=3+m<5+2m②,
或3+m=5+2m<2+4m③,
解得 m∈,或m= ,或m∈
所以m=
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四组函数,表示同一函数的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出的以下四个问题中,不需要用条件语句来描述其算法是(
A.输入一个实数x,求它的绝对值
B.求面积为6的正方形的周长
C.求三个数a、b、c中的最大数
D.求函数f(x)= 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,且满足b2﹣a2=ac,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x+2<0},B={x|(x+3)(x﹣1)>0}.
(1)求集合A∩B;
(2)若不等式ax2+2x+b>0的解集为A∪B,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(m+1)x+m,g(x)=﹣(m+4)x﹣4+m,m∈R.
(1)比较f(x)与g(x)的大小;
(2)解不等式f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足c=2,C=
(Ⅰ)若a= ,求角A的大小;
(Ⅱ)若△ABC的面积等于 ,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点满足: .

1)求动点的轨迹的方程;

2)设过点的直线与曲线交于两点,点关于轴的对称点为(点与点不重合),证明:直线恒过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 ,g(x)=x3﹣x2﹣3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1 , x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的 ,都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案