精英家教网 > 高中数学 > 题目详情
如图2-1-18,已知△ABC的外接圆中,DE分别为的中点,弦DEABACFG.求证:AF =AG.

图2-1-18

思路分析:可以通过等角对等边来证明此题,即证明∠AFG=∠AGF,将∠AFGAGF分别看作△FBE与△DGC的外角,利用已知中DE的中点可以证明角相等.

证明:连结BECD,AFE =∠1+∠2,?

又∠1+∠2 +),?

∴∠AFG +).?

∴∠AGD +∠3+∠4.?

DE中点,?

=, =.?

∴∠AFG =∠AGF.?

AF =AG.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知D是面积为1的△ABC的边AB上的任一点,E是边AC上任一点,连接DE,F是线段DE上一点,连接BF,设
AD
=λ1
AB
AE
=λ2
AC
DF
=λ3
DE
,且λ2+λ3-λ1=
1
2
,则△BDF的面积S的最大值是(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)为了了解某年级1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.
(1)请估计该年级学生中百米成绩在[16,17)内的人数;
(2)求调查中共随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个学生的成绩,记为m,n,若m,n都在区间[13,14]上,则得4分,若m,n都在区间[17,18]上,则得2分,否则得0分,用X表示得分,求X的分布列并计算期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知D是面积为1的△ABC的边AB上任一点,E是边AC上任一点,连接DE,F是线段DE上一点,连接BF,设
AD
=λ1
AB
AE
=λ2
AC
DF
=λ3
DE
,且λ2+λ3-λ1=
1
2
,记△BDF的面积为s=f(λ1,λ2,λ3),则S的最大值是(  )
【注:必要时,可利用定理:若a,b,c∈R+,则abc≤(
a+b+c
3
)3
,(当且仅当a=b=c时,取“=”)】

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-5-18,已知⊙O1和⊙O2相交于点AB,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点DE,DEAC相交于点P.

图2-5-18

(1)求证:ADEC;

(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.

查看答案和解析>>

同步练习册答案