【题目】某地实施乡村振兴战略,对农副产品进行深加工以提高产品附加值,已知某农产品成本为每件3元,加工后的试营销期间,对该产品的价格与销售量统计得到如下数据:
单价x(元) | 6 | 6.2 | 6.4 | 6.6 | 6.8 | 7 |
销量y(万件) | 80 | 74 | 73 | 70 | 65 | 58 |
数据显示单价x与对应的销量y满足线性相关关系.
(1)求销量y(件)关于单价x(元)的线性回归方程;
(2)根据销量y关于单价x的线性回归方程,要使加工后收益P最大,应将单价定为多少元?(产品收益=销售收入-成本).
参考公式:==,
科目:高中数学 来源: 题型:
【题目】已知动点M到定点F1(-2,0)和F2(2,0)的距离之和为.
(1)求动点M轨迹C的方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交椭圆C于不同于N的A,B两点,直线NA,NB的斜率分别为k1,k2,问k1+k2是否为定值?若是的求出这个值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD.分别过点C、D作边BC、AD的垂线,设两条垂线的交点为P.过点P作与Q.求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中不可或缺的一部分市某调查机构针对该市市场占有率最高的两种网络外卖企业以下简称外卖A、外卖的服务质量进行了调查,从使用过这两种外卖服务的市民中随机抽取了1000人,每人分别对这两家外卖企业评分,满分均为100分,并将分数分成5组,得到以下频数分布表:
分数 人数 种类 | |||||
外卖A | 50 | 150 | 100 | 400 | 300 |
外卖B | 100 | 100 | 300 | 200 | 300 |
表中得分越高,说明市民对网络外卖服务越满意若得分不低于60分,则表明该市民对网络外卖服务质量评价较高现将分数按“服务质量指标”划分成以下四个档次:
分数 | ||||
服务质量指标 | 0 | 1 | 2 | 3 |
视频率为概率,解决下列问题:
从该市使用过外卖A的市民中任选5人,记对外卖A服务质量评价较高的人数为X,求X的数学期望.
从参与调查的市民中随机抽取1人,试求其评分中外卖A的“服务质量指标”与外卖B的“服务质量指标”的差的绝对值等于2的概率;
在M市工作的小王决定从外卖A、外卖B这两种网络外卖中选择一种长期使用,如果从这两种外卖的“服务质量指标”的期望角度看,他选择哪种外卖更合适?试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形.
(1)求椭圆的方程和“相关圆”的方程;
(2)过“相关圆”上任意一点的直线l:与椭圆交于两点.O为坐标原点,若,证明原点O到直线的距离是定值,并求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线的一条弦的中点作平行于抛物线对称轴的平行线(或与对称轴重合),交抛物线于一点,称以该点及弦的端点为顶点的三角形为这条弦的阿基米德三角形(简称阿氏三角形).
现有抛物线:,直线:(其中,,是常数,且),直线交抛物线于,两点,设弦的阿氏三角形是.
(1)指出抛物线的焦点坐标和准线方程;
(2)求的面积(用,,表示);
(3)称的阿氏为一阶的;、的阿氏、为二阶的;、、、的阿氏三角形为三阶的;……,由此进行下去,记所有的阶阿氏三角形的面积之和为,探索与之间的关系,并求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com