精英家教网 > 高中数学 > 题目详情

已知矩形纸片ABCD中,AB=6,AD=12,将举行制品的右下角沿线段MN折叠,使矩形的顶点B落在矩形的边AD上,记该点为E,且折痕MN的两端点M、N分别位于边AB,BC上,设∠MNB=θ,MN=l,△EMN的面积为S,
(1)将l表示成θ的函数,并确定θ的取值范围;
(2)问当θ为何值时,△EMN的面积S取得最小值?并求出这个最小值.

解:(1)设将矩形纸片的右下角折起后,顶点B落在边AD上的E处,则∠ENM=θ,∠EMA=2θ
从而有:NB=lcosθ,MB=ME=lsinθ,AM=MEcos2θ=lsinθcos2θ.
∵AM+MB=6,∴lsinθcos2θ+lsinθ=6,
得:l==
又BN≤12,BM≤6,∴,∴l=
(2),∴
,记f(t)=t3-t4∴f′(t)=3t2-4t3
令f′(t)=0,∴
时,即时f(t)取得最大值为,S去最小值为
分析:(1)将一个图形折起,注意其中变与不变的量,表示出要用的量,根据两条线段的长度之和,写出关于l的方程,表示出结果,得到函数式.
(2)对函数式求导,根据换元时的自变量的值,使得导函数等于0,解出自变量的值,根据函数的单调性求出函数的最小值.
点评:本题考查已知三角函数模型的应用问题,解答本题的关键是建立起符合条件的模型,作出正确的示意图,然后再由三角形中的相关知识进行运算,解三角形的应用一般是求距离注意应用三角形的边与角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使该角的顶点B落在矩形的边AD上,且折痕MN的两端点M、N分别位于边AB、BC上,设∠MNB=θ,MN=l.
(1)试将l表示成θ的函数;
(2)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使得该角的顶点B落在矩形的边AD上,且折痕MN的端点M,N分别位于边AB,BC上,设∠MNB=θ,sinθ=t,MN长度为l.
(1)试将l表示为t的函数l=f(t);
(2)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使得该角的顶点B落在矩形的左边AD上,且折痕MN的两端点M、N分别位于边AB、BC上,设∠MNB=θ,则θ的取值范围为
[
π
12
π
4
]
[
π
12
π
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形纸片的右下角折起,使得该角的顶点B落在矩形的边AD上,且折痕MN的端点M,N分别位于边AB,BC上,设∠MNB=θ,sinθ=t,MN长度为l.
(1)试将l表示为t的函数l=f(t),并给出这个函数的定义域;
(2)判断这个函数的单调性,并给出证明;
(3)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形纸片ABCD中,AB=6,AD=12,将举行制品的右下角沿线段MN折叠,使矩形的顶点B落在矩形的边AD上,记该点为E,且折痕MN的两端点M、N分别位于边AB,BC上,设∠MNB=θ,MN=l,△EMN的面积为S,
(1)将l表示成θ的函数,并确定θ的取值范围;
(2)问当θ为何值时,△EMN的面积S取得最小值?并求出这个最小值.

查看答案和解析>>

同步练习册答案