精英家教网 > 高中数学 > 题目详情

【题目】已知函数)为奇函数,且相邻两对称轴间的距离为

1)当时,求的单调递减区间;

2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

【答案】1]2)值域为[]

【解析】

(1)利用三角恒等变换化简的解析式,根据条件,可求出周期,结合奇函数性质,求出,再用整体代入法求出内的递减区间;

(2)利用函数的图象变换规律,求出的解析式,再利用正弦函数定义域,即可求出时的值域.

解:(1)由题意得,

因为相邻两对称轴之间距离为,所以

又因为函数为奇函数,所以,∴

因为,所以

故函数

..

因为,所以函数的单调递减区间为]

2)由题意可得,

因为,所以

所以.

即函数的值域为[]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中的导函数.

.

1)求的表达式;

2)求证:,其中nN*.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥如图一)的平面展开图(如图二)中,四边形为边长等于的正方形均为正三角形,在三棱锥中:

(I)证明:平面平面

Ⅱ)若点在棱上运动,当直线与平面所成的角最大时,求二面角的余弦值.

图一

图二

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的个数是(

A=的子集有个;

②命题的否定是使得

函数取得最大值的充分不必要条件;

④根据对数定义,对数式化为指数式

⑤若,则的取值范围为

.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求分数在[120,130)内的频率;

(2)估计本次考试的中位数;

(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)解方程

2)令,求的值.

3)若是定义在上的奇函数,且对任意恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数,满足,且对任意实数),恒有成立.

⑴试写 出一组满足条件的具体的,使为增函数,为减函数,但为增函数.

⑵判断下列两个命题的真假,并说明理由.

命题1):若为增函数,则为增函数;

命题2):若为增函数,则为增函数.

⑶已知,写出一组满足条件的具体的,且为非常值函数,并说明理由.

查看答案和解析>>

同步练习册答案