分析 (1)直接弦化切,即可求tanα的值;
(2)法一:求出sinα,cosα,分类讨论求$\frac{{{{sin}^2}α+2sinαcosα}}{{3{{sin}^2}α+{{cos}^2}α}}$的值.法二:原式分子分母同除以cos2α,弦化切,即可求$\frac{{{{sin}^2}α+2sinαcosα}}{{3{{sin}^2}α+{{cos}^2}α}}$的值.
解答 解:(1)∵$\frac{tanα}{tanα-1}=-1$,
∴tanα=-tanα+1$⇒tanα=\frac{1}{2}$
(2)法一:由(1)知:$tanα=\frac{1}{2}$,∴$\left\{\begin{array}{l}sinα=\frac{{\sqrt{5}}}{5}\\ cosα=\frac{{2\sqrt{5}}}{5}\end{array}\right.$或$\left\{\begin{array}{l}sinα=-\frac{{\sqrt{5}}}{5}\\ cosα=-\frac{{2\sqrt{5}}}{5}\end{array}\right.$
当$sinα=\frac{{\sqrt{5}}}{5}$,$cosα=\frac{{2\sqrt{5}}}{5}$时,原式=$\frac{{{{(\frac{{\sqrt{5}}}{5})}^2}+2×\frac{{\sqrt{5}}}{5}×\frac{{2\sqrt{5}}}{5}}}{{3{{(\frac{{\sqrt{5}}}{5})}^2}+{{(\frac{{2\sqrt{5}}}{5})}^2}}}=\frac{5}{7}$
当$sinα=-\frac{{\sqrt{5}}}{5}$,$cosα=-\frac{{2\sqrt{5}}}{5}$时,
原式=$\frac{{{{(-\frac{{\sqrt{5}}}{5})}^2}+2×(-\frac{{\sqrt{5}}}{5})×(-\frac{{2\sqrt{5}}}{5})}}{{3{{(-\frac{{\sqrt{5}}}{5})}^2}+{{(-\frac{{2\sqrt{5}}}{5})}^2}}}=\frac{5}{7}$
综上:原式=$\frac{5}{7}$
法二:原式分子分母同除以cos2α得:
原式=$\frac{{\frac{{{{sin}^2}α}}{{{{cos}^2}α}}+\frac{2sinα•cosα}{{{{cos}^2}α}}}}{{\frac{{3{{sin}^2}α}}{{{{cos}^2}α}}+1}}=\frac{{{{(\frac{sinα}{cosα})}^2}+2•(\frac{sinα}{cosα})}}{{3•{{(\frac{sinα}{cosα})}^2}+1}}=\frac{{{{tan}^2}α+2tanα}}{{3{{tan}^2}α+1}}$
=$\frac{{{{(\frac{1}{2})}^2}+2×\frac{1}{2}}}{{3×{{(\frac{1}{2})}^2}+1}}=\frac{5}{7}$
点评 本题考查同角三角函数关系,考查学生的转化能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,2) | B. | ($\sqrt{2}$,2) | C. | ($\sqrt{2}$,$\sqrt{3}$) | D. | ($\sqrt{3}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com