【题目】已知圆经过两点,,且圆心在直线:上.
(1)求圆的方程;
(2)设圆与轴相交于、两点,点为圆上不同于、的任意一点,直线、交轴于、点.当点变化时,以为直径的圆是否经过圆内一定点?请证明你的结论.
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,离心率等于,该椭圆的一个长轴端点恰好是抛物线的焦点.
(1)求椭圆的方程;
(2)已知直线与椭圆的两个交点记为、,其中点在第一象限,点、是椭圆上位于直线两侧的动点.当、运动时,满足,试问直线的斜率是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了5个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价:(单位:元/月)和购买人数(单位:万人)的关系如表:
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系?并指出是正相关还是负相关;
(2)①求出关于的回归方程;
②若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.
参考数据:,,.
参考公式:相关系数,回归直线方程,
其中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将三棱锥与拼接得到如图所示的多面体,其中,,,分别为,,,的中点,.
(1)当点在直线上时,证明:平面;
(2)若与均为面积为的等边三角形,求该多面体体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校300名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟).
平均每天锻炼的时间/分钟 | ||||||
总人数 | 34 | 51 | 59 | 66 | 65 | 25 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 40 | 160 | |
合计 |
(2)通过计算判断,是否能在犯错误的概率不超过0.05的前提下认为“锻炼达标”与性别有关?
参考公式:,其中.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“2019年”是一个重要的时间节点——中华人民共和国成立70周年,和全面建成小康社会的 关键之年.70年披荆斩棘,70年砥砺奋进,70年风雨兼程,70年沧桑巨变,勤劳勇敢的中国 人用自己的双手创造了一项项辉煌的成绩,取得了举世瞩目的成就.趁此良机,李明在天猫网店销售“新中国成立70周年纪念册”,每本纪念册进价4元,物流费、管理费共为元/本,预计当每本纪念册的售价为元(时,月销售量为千本.
(I)求月利润(千元)与每本纪念册的售价X的函数关系式,并注明定义域:
(II)当为何值时,月利润最大?并求出最大月利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com