精英家教网 > 高中数学 > 题目详情

【题目】我国新型冠状病毒肺炎疫情期间,以网络购物和网上服务所代表的新兴消费展现出了强大的生命力,新兴消费将成为我国消费增长的新动能.某市为了了解本地居民在20202月至3月两个月网络购物消费情况,在网上随机对1000人做了问卷调查,得如下频数分布表:

网购消费情况(元)

频数

300

400

180

60

60

1)作出这些数据的频率分布直方图,并估计本市居民此期间网络购物的消费平均值;

2)在调查问卷中有一项是填写本人年龄,为研究网购金额和网购人年龄的关系,以网购金额是否超过4000元为标准进行分层抽样,从上述1000人中抽取200人,得到如下列联表,请将表补充完整并根据列联表判断,在此期间是否有95%的把握认为网购金额与网购人年龄有关.

网购不超过4000

网购超过4000

总计

40岁以上

75

100

40岁以下(含40岁)

总计

200

参考公式和数据:.(其中为样本容量)

0.050

0.010

0.001

3.841

6.635

10.828

【答案】1)作图见解析;估计本市居民此期间网络购物的消费平均值为(元)

2)填表见解析;在此期间没有95%的把握认为网购金额与网购人年龄有关

【解析】

1)计算出每组的频率/组距,从而得出频率分布直方图,再计算平均值即可;

2)根据分层抽样的性质得出网络购物消费不超过4000元和超过4000元抽取的人数,填写列联表,计算,即可作出判断.

1

对应的频率/组距分别为

从而得出频率分布直方图

由频率分布直方图,估计本市居民此期间网络购物的消费平均值为

(元)

1)由数据可知网络购物消费不超过4000元的有

网络购物消费超过4000元的有人,完成下表:

网购不超过4000

网购超过4000

总计

40岁以上

75

25

100

40岁以下(含40岁)

65

35

100

总计

140

60

200

由公式

所以在此期间没有95%的把握认为网购金额与网购人年龄有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若数列满足n≥2时,,则称数列(n)L数列

1)若,且L数列,求数列的通项公式;

2)若,且L数列为递增数列,求k的取值范围;

3)若,其中p1,记L数列的前n项和为,试判断是否存在等差数列,对任意n,都有成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,底面ABCD为直角梯形,,且平面平面ABCD.

1)求证:

2)在线段PA上是否存在一点M,使二面角M-BC-D的大小为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,已知是直角三角形,侧面是矩形,.

1)证明:.

2是棱的中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学有教师400人,其中高中教师240人.为了了解该校教师每天课外锻炼时间,现利用分层抽样的方法从该校教师中随机抽取了100名教师进行调查,统计其每天课外锻炼时间(所有教师每天课外锻炼时间均在分钟内),将统计数据按,…,分成6组,制成频率分布直方图如下:

假设每位教师每天课外锻炼时间相互独立,并称每天锻炼时间小于20分钟为缺乏锻炼.

1)试估计本校教师中缺乏锻炼的人数;

2)若从参与调查,且每天课外锻炼时间在内的该校教师中任取2人,求至少有1名初中教师被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在单位圆Ox2+y21上任取一点Pxy),圆Ox轴正向的交点是A,设将OA绕原点O旋转到OP所成的角为θ,记xy关于θ的表达式分别为xfθ),ygθ),则下列说法正确的是(  )

A.xfθ)是偶函数,ygθ)是奇函数

B.xfθ)在为增函数,ygθ)在为减函数

C.fθ+gθ≥1对于恒成立

D.函数t2fθ+g2θ)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请从下面三个条件中任选一个,补充在下面的横线上,并作答.

ABBC,②FC与平面ABCD所成的角为,③∠ABC

如图,在四棱锥PABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PAAB2,,PD的中点为F

1)在线段AB上是否存在一点G,使得AF平面PCG?若存在,指出GAB上的位置并给以证明;若不存在,请说明理由;

2)若_______,求二面角FACD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点的交点.

1)求二面角的余弦值;

2)若点在线段上且平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点F任作两条互相垂直的直线,分别与抛物线E交于AB两点和CD两点,则的最小值为________

查看答案和解析>>

同步练习册答案