精英家教网 > 高中数学 > 题目详情

【题目】学校欲在甲、乙两店采购某款投影仪,该投影仪原价为每台2000元,甲店用如下方法促销:买一台单价为1950元,买二台单价为1900元,每多买一台,则所买各台单价均再减50元,但最低不能低于1200元;乙店一律按原售价的80%促销,学校需要购买台投影仪,若在甲店购买费用为元,若在乙店购买费用记为.

1)分别求出的解析式;

2)当购买台时,在哪家店买更省钱?

【答案】1;(2)当购买大于8台时;在甲店买省钱;当购买小于8台时,在乙店买省钱;当购买8台时,在甲、乙店买一样.

【解析】

1)分类讨论求出,再根据题意可求出

2)作差比较大小,即可得出结论.

1)由,可得

时,

时,

2)当时,

时,

时,

时,

时,

综上所述,当购买大于8台时;在甲店买省钱;当购买小于8台时,在乙店买省钱;当购买8台时,在甲、乙店买一样.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

(1)函数的图象能否与轴相切?若能,求出实数若不能请说明理由

(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)用函数单调性的定义在在证明:函数在区间上单调递减,在上单调递增;

(2)若对任意满足的实数,都有成立,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着机构改革的深入,各单位要减员增效,一家公司现有职员人(),且为偶数,每人每年可创利5万元,据评估,每裁员1人,留守职员每人每年多创利润0. 1万元,但公司要付下岗职员每人每年3万元的生活费.

1)假设公司裁员人,请写出公司获得的利益关于的解析式;

2)公司正常的运转所需人数不得少于现有职员的,为了获得最大效益,该公司应当裁员多少人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为,现从中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为直径的圆上,垂直与圆所在平面,的垂心.

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设曲线交于点,曲线轴交于点,求线段的中点到点的距离.

查看答案和解析>>

同步练习册答案