精英家教网 > 高中数学 > 题目详情
三次函数f(x)=x3+ax2+bx+c的图象如图所示,直线BD∥AC,且直线BD与函数图象切于点B,交于点D,直线AC与函数图象切于点C,交于点A.
(1)若函数f(x)为奇函数且过点(1,-3),当x<0时求的最大值;
(2)若函数在x=1处取得极值-2,试用c表示a和b,并求f(x)的单调递减区间;
(3)设点A、B、C、D的横坐标分别为xA,xB,xC,xD求证    (xA-xB):(xB-xC):(xC-xD)=1:2:1.

【答案】分析:(1)直接由函数f(x)为奇函数且过点(1,-3),得到a=c=0,b=-4,代入并整理,再结合基本不等式即可求出其最大值;
(2)先求出其导函数,根据函数在x=1处取得极值-2,得到;在代入其导函数,通过比较导数等于0的两个根的大小求出函数的单调递减区间;
(3)先设直线BD的方程为y=f′(xB)(x-xB)+f(xB),结合D点在直线上又在曲线上,得到xD+2xB+a=0;同理得到xA+2xC+a=0;进而求出(xA-xB)+(xC-xD)=(xB-xC),最后结合直线BD∥AC得到,结合上面所找的结论即可证得(xA-xB):(xB-xC):(xC-xD)=1:2:1.
解答:解:(1)由已知得a=c=0,b=-4,
当x<0时当且仅当x=-2时取得最大值-4(3分)
(2)f′(x)=3x2+2ax+b,依题意有(5分)
从而f′(x)=3x2+2cx-(2c+3)=0=(3x+(2c+3))(x-1),
令f′(x)=0有x=1或
由于f(x)在x=1处取得极值,因此,得到c≠-3
①若,即c<-3,
则当时,f′(x)<0,因此f(x)的单调递减区间为;       (7分)
②若,即c>-3,
则当时,f′(x)<0,因此f(x)的单调递减区间为.(8分)
(3)证明:设直线BD的方程为y=f′(xB)(x-xB)+f(xB)因为D点在直线上又在曲线上,
所以f(xD)=f′(xB)(xD-xB)+f(xB
即(xD3+axD2+bxD+c)-(xB3+axB2+bxB+c)=(3xB2+2axB+b)(xD-xB
得到:xD2+xDxB-2xB2+axD-axB=0从而xD+2xB+a=0,①
同理有xA+2xC+a=0    ②,
由于AC平行于BD,因此f′(xB)=f′(xC),得到
进一步结合①②化简可以得到,从而xA-xB=xC-xD
又由①②得:(xA-xB)+(xC-xD)=(xB-xC),
因此(xA-xB):(xB-xC):(xC-xD)=1:2:1(14分)
点评:考查学生利用导数研究函数极值,研究函数单调性的能力,函数与方程的灵活运用能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,a、b为实数.
(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;
(2)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,且1<a<2,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)已知三次函数f(x)=ax3+bx2+cx(a,b,c∈R).
(1)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;
(2)当a=1时,若-2≤f(-1)≤1,-1≤f(1)≤3,试求f(2)的取值范围;
(3)对?x∈[-1,1],都有|f′(x)|≤1,试求实数a的最大值,并求a取得最大值时f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南师大附中高三第一次月考数学试卷(理科)(解析版) 题型:填空题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x,则称(x,f(x))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数,请你根据上面探究结果,解答以下问题
(1)函数f(x)=x3-x2+3x-的对称中心为   
(2)计算+…+f()=   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市双流县棠湖中学高三(上)11月月考数学试卷(文科)(解析版) 题型:填空题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x,则称(x,f(x))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数,请你根据上面探究结果,解答以下问题
(1)函数f(x)=x3-x2+3x-的对称中心为   
(2)计算+…+f()=   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江师范附中高考复习数学模拟试卷3(理科)(解析版) 题型:解答题

已知三次函数f(x)=ax3+bx2+cx(a,b,c∈R).
(1)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;
(2)当a=1时,若-2≤f(-1)≤1,-1≤f(1)≤3,试求f(2)的取值范围;
(3)对?x∈[-1,1],都有|f′(x)|≤1,试求实数a的最大值,并求a取得最大值时f(x)的表达式.

查看答案和解析>>

同步练习册答案