精英家教网 > 高中数学 > 题目详情
3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(1<a<4)的右顶点到直线x=4的距离为1,则椭圆的离心率为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{2}}{3}$

分析 由题意知|a-4|=1,从而解得a=3,c=$\sqrt{9-1}$=2$\sqrt{2}$,从而求得.

解答 解:椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1的右项点为(a,0),
故|a-4|=1,
解得,a=3或a=5(舍去),
故c=$\sqrt{9-1}$=2$\sqrt{2}$,
故椭圆的离心率为e=$\frac{c}{a}$=$\frac{2\sqrt{2}}{3}$,
故选:D.

点评 本题考查了椭圆的标准方程与椭圆的几何性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.正方体ABCD-A1B1C1D1的棱长为a,E,F分别是BB1,CD的中点,则点F到平面A1D1E的距离为(  )
A.$\frac{3}{10}$aB.$\frac{3\sqrt{7}}{10}$aC.$\frac{3\sqrt{5}}{10}$aD.$\frac{7}{10}$a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设双曲线$\frac{{y}^{2}}{4}$-x2=1上的点P到点(0,$\sqrt{5}$)的距离为6,则P点到(0,-$\sqrt{5}$)的距离是(  )
A.2或10B.10C.2D.4或8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某校安排小李等5位实习教师到一、二、三班实习,若要求每班至少安排一人且小李到一班,则不同的安排方案种数为50.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数满足f(x+1)=xf(x),且当x∈[0,1)时,f(x)=x2,若在区间(-1,1)上,g(x)=f(x)-mx+1有两个零点,则m的范围(  )
A.m<-$\frac{5}{4}$或m>2B.m>2C.-$\frac{5}{4}$<m≤-1或m=2D.-$\frac{5}{4}$<m≤-1或m>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥与外接球的体积比为(  )
A.$\frac{2\sqrt{3}}{9π}$B.$\frac{\sqrt{3}}{9π}$C.$\frac{\sqrt{2}}{16π}$D.$\frac{8\sqrt{2}}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=5sin($\frac{x}{3}$-$\frac{π}{10}$)(x∈R)的最大值和最小正周期分别是(  )
A.5,2πB.1,6πC.1,2πD.5,6π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=(3,-2),$\overrightarrow{b}$=(2,1).
(1)|2$\overrightarrow{a}$-$\overrightarrow{b}$|;
(2)($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+2$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知O(0,0,0),A(1,2,3),B(2,1,2),P(1,1,2),点Q在直线OP上运动,当$\overrightarrow{QA}$•$\overrightarrow{QB}$取最小值时,点Q的坐标是(  )
A.($\frac{4}{3}$,$\frac{4}{3}$,$\frac{8}{3}$)B.(-$\frac{4}{3}$,-$\frac{4}{3}$,$\frac{8}{3}$)C.($\frac{4}{3}$,$\frac{4}{3}$,-$\frac{8}{3}$)D.(-$\frac{4}{3}$,-$\frac{4}{3}$,-$\frac{8}{3}$)

查看答案和解析>>

同步练习册答案