精英家教网 > 高中数学 > 题目详情

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的50人进行问卷调查,得到了如下的列联表:

(1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?

(2)在上述抽取的6人中选2人,求恰好有1名女性的概率;

(3)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?

【答案】(1)见解析;(2);(3)有99.5%把握认为心肺疾病与性别有关

【解析】

试题分析:(1)分层抽样即按比例抽样,由此得到男性抽多少人;

(2) 设4男分为:;2女分为:,则6人中抽出2人的所有抽法共15种抽法,其中恰好有1名女性的抽法有8种,根据古典概型公式得到结果;

(3)由列联表得,查临界值表知:有多大把握认为心肺疾病与性别有关.

试题解析:

(1)在患心肺疾病的人群中抽6人,其中男性抽4人;

(2)设4男分为:;2女分为:,则6人中抽出2人的所有抽法:(列举略)共15种抽法,其中恰好有1名女性的抽法有8种.所以恰好有1个女生的概率为.

(3)由列联表得,查临界值表知:有99.5%把握认为心肺疾病与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两个定点 动点满足,设动点的轨迹为曲线,直线.

1)求曲线的轨迹方程;

2)若与曲线交于不同的两点,且 (为坐标原点),求直线的斜率;

3)若是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点,若存在定点请写出坐标,若不存在则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

函数的一条对称轴是

函数的图象关于点(,0)对称;

正弦函数在第一象限为增函数

,则,其中

以上四个命题中正确的有    (填写正确命题前面的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Ey2=8x,圆M:(x-2)2y2=4,点N为抛物线E上的动点,O为坐标原点,线段ON的中点P的轨迹为曲线C.

(1)求曲线C的方程;

(2)点Q(x0y0)(x0≥5)是曲线C上的点,过点Q作圆M的两条切线,分别与x轴交于AB两点,求△QAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,则该几何体的体积为( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,则该几何体的体积为( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}{bn}满足,a12b11,且对任意正整数n恒满足2an+14an+2bn+12bn+12an+4bn1.

1)求证:{an+bn}为等比数列,{anbn}为等差列;

2)求证n1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,侧面底面ABCD,底面ABCD为直角梯形,EF分别为ADPC的中点.

求证:平面BEF

,求二面角的余弦值.

查看答案和解析>>

同步练习册答案