【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的50人进行问卷调查,得到了如下的列联表:
(1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(2)在上述抽取的6人中选2人,求恰好有1名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?
【答案】(1)见解析;(2);(3)有99.5%把握认为心肺疾病与性别有关
【解析】
试题分析:(1)分层抽样即按比例抽样,由此得到男性抽多少人;
(2) 设4男分为:;2女分为:,则6人中抽出2人的所有抽法共15种抽法,其中恰好有1名女性的抽法有8种,根据古典概型公式得到结果;
(3)由列联表得,查临界值表知:有多大把握认为心肺疾病与性别有关.
试题解析:
(1)在患心肺疾病的人群中抽6人,其中男性抽4人;
(2)设4男分为:;2女分为:,则6人中抽出2人的所有抽法:(列举略)共15种抽法,其中恰好有1名女性的抽法有8种.所以恰好有1个女生的概率为.
(3)由列联表得,查临界值表知:有99.5%把握认为心肺疾病与性别有关.
科目:高中数学 来源: 题型:
【题目】已知两个定点,, 动点满足,设动点的轨迹为曲线,直线:.
(1)求曲线的轨迹方程;
(2)若与曲线交于不同的、两点,且 (为坐标原点),求直线的斜率;
(3)若,是直线上的动点,过作曲线的两条切线、,切点为、,探究:直线是否过定点,若存在定点请写出坐标,若不存在则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列五个命题:
①函数的一条对称轴是;
②函数的图象关于点(,0)对称;
③正弦函数在第一象限为增函数
④若,则,其中
以上四个命题中正确的有 (填写正确命题前面的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线E:y2=8x,圆M:(x-2)2+y2=4,点N为抛物线E上的动点,O为坐标原点,线段ON的中点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)点Q(x0,y0)(x0≥5)是曲线C上的点,过点Q作圆M的两条切线,分别与x轴交于A,B两点,求△QAB面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}和{bn}满足,a1=2,b1=1,且对任意正整数n恒满足2an+1=4an+2bn+1,2bn+1=2an+4bn﹣1.
(1)求证:{an+bn}为等比数列,{an﹣bn}为等差列;
(2)求证(n>1).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com