精英家教网 > 高中数学 > 题目详情

【题目】自点A(-33)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在直线的方程。

【答案】已知圆的标准方程是(x-2)2+(y-2)2=1,它关于x轴的对称圆的方程是(x-2)2+(y+2)2=1。设光线L所在的直线的方程是y-3=k(x+3)(其中斜率k待定),由题设知对称圆的圆心C′2-2)到这条直线的距离等于1,即d==1。整理得 12k2+25k+12=0,解得k= -k= -。故所求直线方程是y-3= -(x+3),或y-3= -(x+3),即3x+4y-3=04x+3y+3=0

【解析】试题分析:已知圆关于轴的对称圆的方程为

2

如图所示.

可设光线所在直线方程为4

直线与圆相切,

圆心到直线的距离6

解得. 10

光线所在直线的方程为.…12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数,其图象关于点对称,且在区间上是单调函数,则的值是( )

A. B. C. D. 无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的单调递减区间;

(2)当时,设函数.若函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 :关于的方程的两根之差的绝对值大于3.如果为真命题,为假命题,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以边长为4的等比三角形的顶点以及边的中点为左、右焦点的椭圆过两点.

1)求该椭圆的标准方程;

2)过点轴不垂直的直线交椭圆于两点,求证直线的交点在一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a,现将组成a的三个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=219,则I(a)=129,D(a)=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,则输出b的值为

A.792 B.693

C.594 D.495

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,已知平面 .

(1)求证:平面平面

(2)直线与平面所成角为,求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业开发一种新产品,现准备投入适当的广告费,对产品进行促销,在一年内,预计年销量Q(万件)与广告费x(万件)之间的函数关系为,已知生产此产品的年固定投入为3万元,每年产1万件此产品仍需要投入32万元,若年销售额为,而当年产销量相等。

(1)试将年利润P(万件)表示为年广告费x(万元)的函数;

(2)当年广告费投入多少万元时,企业年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一批产品需要原材料500吨,每吨原材料可创造利润12万元,该公司通过设备升级,生产这批产品所需原材料减少了吨,且每吨原材料创造的利润提高了;若将少用的吨原材料全部用于生产公司新开发的产品,每吨原材料创造的利润为万元,其中a>0

1)若设备升级后生产这批A产品的利润不低于原来生产该批A产品的利润,求的取值范围;

2)若生产这批B产品的利润始终不高于设备升级后生产这批A产品的利润,求的最大值.

查看答案和解析>>

同步练习册答案