【题目】设函数 ,若存在 同时满足以下条件:①对任意的 ,都有 成立;② ,则 的取值范围是 .
【答案】
【解析】∵对任意的 ,都有 成立,且 ∴对 成立,只需满足 即可. ∵ ∴当 时, ∵ ∴ ∴ 或
所以答案是
【考点精析】掌握函数的定义域及其求法和函数的值域是解答本题的根本,需要知道求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2= ,且直线l经过曲线C的左焦点F. ( I )求直线l的普通方程;
(Ⅱ)设曲线C的内接矩形的周长为L,求L的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣ax+ (a∈R).
(1)当a=﹣ 时,求函数f(x)的单调区间和极值.
(2)若g(x)=f(x)+a(x﹣1)有两个零点x1 , x2 , 且x1<x2 , 求证:x1+x2>1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列 满足:① ;②所有项 ;③ .
设集合 ,将集合 中的元素的最大值记为 .换句话说, 是
数列 中满足不等式 的所有项的项数的最大值.我们称数列 为数列 的
伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.
(1)若数列 的伴随数列为1,1,1,2,2,2,3,请写出数列 ;
(2)设 ,求数列 的伴随数列 的前100之和;
(3)若数列 的前 项和 (其中 常数),试求数列 的伴随数列 前 项和 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中学校共有学生1800名,各年级男女学生人数如表.已知在全校学生中随机抽取1名,抽到高二女生的概率是0.16.
高一年级 | 高二年级 | 高三年级 | |
女生 | 324 | x | 280 |
男生 | 316 | 312 | y |
现用分层抽样的方法,在全校抽取45名学生,则应在高三抽取的学生人数为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的通项公式为an=2n﹣1(n∈N*),且a2 , a5分别是等比数列{bn}的第二项和第三项,设数列{cn}满足cn= ,{cn}的前n项和为Sn
(1)求数列{bn}的通项公式;
(2)是否存在m∈N* , 使得Sm=2017,并说明理由
(3)求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题: ①已知随机变量X~N(0,σ2),若P(|X|<2)=a,则P(X>2)的值为 ;
②设a、b∈R,则“log2a>log2b”是“2a﹣b>1”的充分不必要条件;
③函数f(x)= ﹣( )x的零点个数为1;
④命题p:n∈N,3n≥n2+1,则¬p为n∈N,3n≤n2+1.
其中真命题的序号为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com