精英家教网 > 高中数学 > 题目详情

【题目】如图,△ABC为一个等腰三角形形状的空地,腰CA的长为3(百米),底AB的长为4(百米).现决定在该空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为S1S2.

(1) 若小路一端EAC的中点,求此时小路的长度;

(2) 的最小值.

【答案】解:(1) ∵ EAC中点,∴ AECE.

34∴ F不在BC上.(2)

FAB上,则AEAF3AE4AF3∴ AEAF5.

∴ AF4.(4)

△ABC中,cosA.(5)

△AEF中,EF2AE2AF22AE·AFcosA××

∴ EF.(6) 即小路一端EAC的中点时小路的长度为(百米)(7)

(2) 若小道的端点EF点都在两腰上,如图,设CExCFy

答:最小值是.(14)

【解析】

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知全集为,定义集合的特征函数为,对于,给出下列四个结论:

1)对任意,有

2)对任意,若,则

3)对任意,有

4)对任意,有

其中,正确的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的值域是,有下列结论:①当时, ②当时,;③当时, ④当时,.其中结论正确的所有的序号是( )

A.①②B.③④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为提高市场销售业绩,设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对采取促销没有采取促销的营销网点各选了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为精英店”.

采用促销的销售网点

不采用促销的销售网点

1)请根据题中信息填充下面的列联表,并判断是否有的把握认为精英店与采促销活动有关

采用促销

无促销

合计

精英店

非精英店

合计

50

50

100

2)某精英店为了创造更大的利润,通过分析上一年度的售价(单位:元)和日销量(单位:件)()的一组数据后决定选择作为回归模型进行拟合.具体数据如下表,表中的

45.8

395.5

2413.5

4.6

21.6

①根据上表数据计算的值;

②已知该公司产品的成本为10/件,促销费用平均5/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.

附①:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附②:对应一组数据

其回归直线的斜率和截距的最小二乘法估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,OAOBOC所在直线两两垂直,且CA与平面AOB所成角为DAB中点,三棱锥的体积是

1)求三棱锥的高;

2)在线段CA上取一点E,当E在什么位置时,异面直线BEOD所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面平面.

1)求证:

2)求二面角的余弦值;

3)在棱上是否存在点,使得平面?若存在,求的值?若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为的等边三角形中,点分别是边上的点,满足,将沿直线折到的位置. 在翻折过程中,下列结论成立的是(

A.在边上存在点,使得在翻折过程中,满足平面

B.存在,使得在翻折过程中的某个位置,满足平面平面

C.,当二面角为直二面角时,

D.在翻折过程中,四棱锥体积的最大值记为的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

(1)若不等式恒成立,求实数的取值范围;

(2)时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图中六个区域进行染色,每个区域只染一种颜色,每个区域只染一种颜色,且相邻的区域不同色.若有种颜色可供选择,则共有_________种不同的染色方案.

查看答案和解析>>

同步练习册答案