【题目】已知函数f(x)=lg ,f(1)=0,当x>0时,恒有f(x)=lgx.
(1)若不等式f(x)≤lgt的解集为A,且A(0,4],求实数t的取值范围;
(2)若方程f(x)=lg(8x+m)的解集为,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】已知是定义在上的函数,满足.
(1)证明:2是函数的周期;
(2)当时,,求在时的解析式,并写出在()时的解析式;
(3)对于(2)中的函数,若关于x的方程恰好有20个解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆与抛物线有一条斜率为1的公共切线.
(1)求.
(2)设与抛物线切于点,作点关于轴的对称点,在区域内过作两条关于直线对称的抛物线的弦,.连接.
①求证:;
②设面积为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,在x轴正半轴上任意选定一点,过点M作与x轴垂直的直线交C于P,O两点.
(1)设,证明:抛物线在点P,Q处的切线方程的交点N与点M关于原点O对称;
(2)通过解答(1),猜想求过抛物线上一点(不为原点)的切线方程的一种做法,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点F为抛物线C:()的焦点,过点F的动直线l与抛物线C交于M,N两点,且当直线l的倾斜角为45°时,.
(1)求抛物线C的方程.
(2)试确定在x轴上是否存在点P,使得直线PM,PN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于各项均为正数的无穷数列,记,给出下列定义:
①若存在实数,使成立,则称数列为“有上界数列”;
②若数列为有上界数列,且存在,使成立,则称数列为“有最大值数列”;
③若,则称数列为“比减小数列”.
(1)根据上述定义,判断数列是何种数列?
(2)若数列中,,,求证:数列既是有上界数列又是比减小数列;
(3)若数列是单调递增数列,且是有上界数列,但不是有最大值数列,求证:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若曲线在点处的切线方程为,求的值;
(2)若的导函数存在两个不相等的零点,求实数的取值范围;
(3)当时,是否存在整数,使得关于的不等式恒成立?若存在,求出的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,且点在椭圆C上.
(1)求椭圆C的标准方程;
(2)过椭圆上异于其顶点的任意一点Q作圆的两条切线,切点分别为不在坐标轴上),若直线在x轴,y轴上的截距分别为,证明:为定值;
(3)若是椭圆上不同两点,轴,圆E过,且椭圆上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com