精英家教网 > 高中数学 > 题目详情
若函数f(x)=ex-2x-a在R上有两个零点,则实数a的取值范围是   
【答案】分析:画出函数f(x)=ex-2x-a的简图,欲使函数f(x)=ex-2x-a在R上有两个零点,由图可知,其极小值要小于0.由此求得实数a的取值范围.
解答:解:令f,(x)=ex-2=0,则x=ln2,
∴x>ln2,f,(x)=ex-2>0;
x<ln2,f,(x)=ex-2<0;
∴函数f(x)在(ln2,+∞)上是增函数,在(-∞,ln2)上是减函数.
∵函数f(x)=ex-2x-a在R上有两个零点,
所以f(ln2)=2-2ln2-a<0,
故a>2-2ln2.
故填:(2-2ln2,+∞).
点评:本题主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、若函数f(x)=ex-2x-a在R上有两个零点,则实数a的取值范围是
(2-2ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ex+ae-x,其导函数是奇函数,并且曲线y=f(x)的一条切线的斜率是
3
2
,则切点的横坐标是(  )
A、-
ln2
2
B、-ln2
C、
ln2
2
D、ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
ex+1,x≤0
lnx  ,x>0
,则f(f(-2))=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ex+
3
x
,则此函数图象在点(1,f(1))处的切线的倾斜角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|ex+
a
ex
|
x∈[-
1
2
,1]
上增函数,则实数a的取值范围是
[-
1
e
1
e
]
[-
1
e
1
e
]

查看答案和解析>>

同步练习册答案