精英家教网 > 高中数学 > 题目详情
已知偶函数f(x)在[0,+∞)上为增函数,且f(2x-1)<f(1),求x的取值范围.
考点:奇偶性与单调性的综合
专题:计算题,函数的性质及应用,不等式的解法及应用
分析:由偶函数的性质:f(x)=f(|x|),f(2x-1)<f(1)即为f(|2x-1|)<f(1),再由单调性得到不等式解得即可.
解答: 解:偶函数f(x)在[0,+∞)上为增函数,
即有f(x)=f(|x|),
f(2x-1)<f(1)即为
f(|2x-1|)<f(1),
即|2x-1|<1,即有-1<2x-1<1,
解得,0<x<1.
则x的取值范围为(0,1).
点评:本题考查函数的奇偶性和单调性的运用:解不等式,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知i是虚数单位,则
1
21007
2
1+i
2014=(  )
A、iB、-iC、1D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

命题:存在x∈R,“(-2)n>0”的否定是(  )
A、存在x∈R,“(-2)n≤0”
B、存在x∈R,“(-2)n<0”
C、对任何x∈R,“(-2)n≤0”
D、对任何x∈R,“(-2)n<0”

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,其中F1(-2
5
,0),P为C上一点,满足|OP|=|OF1|且|PF1|=4,则椭圆C的方程为(  )
A、
x2
25
+
y2
5
=1
B、
x2
30
+
y2
10
=1
C、
x2
36
+
y2
16
=1
D、
x2
45
+
y2
25
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

若?α∈R.f(x)=
3
sinωx+cosωx在区间(α,α+π]上的零点有且只有两个,则ω的取值集合为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+
1
2
x(x<0)
ex-1(x≥0)
,若函数y=f(x)-kx有3个零点,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=
π
4
,cosB=
4
5
,求三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)当x=x0时,函数f(x)=
cosx
sin4
x
4
+cos4
x
4
取得最大值,则cos2x0的值为(  )
A、-1
B、-
1
2
C、0
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

求曲线C:x2+y2=
5
2
在A(1,
3
2
)处切线的斜率.

查看答案和解析>>

同步练习册答案