精英家教网 > 高中数学 > 题目详情

【题目】已知向量 .设 (t为实数).

(Ⅰ)若,求当取最小值时实数t的值;

(Ⅱ)若,问:是否存在实数t,使得向量和向量的夹角为,若存在,请求出t;若不存在,请说明理由.

【答案】(1)最小值;(2).

【解析】试题分析(Ⅰ)由条件得到的坐标,求出,根据二次函数的最值求解;(Ⅱ)假设存在满足条件的t,结合条件的到,将有关数据代入后可得关于t的方程,对此方程解的情况进行判定即可。

试题解析(1)因为α,所以b

所以

所以

所以

所以当t=-时,|m|取到最小值,最小值为.

(2)存在满足题意的实数t

向量和向量的夹角为时,

则有

所以

则有,且

整理得t2+5t-5=0,

解得t

所以存在t满足条件。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.

(1)求圆C的方程;

(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的方程为=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)( )

A.必在圆x2+y2=2内

B.必在圆x2+y2=2外

C.必在圆x2+y2=1外

D.必在圆x2+y2=1与圆x2+y2=2形成的圆环之间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在直角坐标系中,曲线的参数方程为为参数),现以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

(1)求曲线的普通方程和直线的直角坐标方程

(2)在曲线上是否存在一点,使点到直线的距离最小?若存在,求出距离的最小值及点的直角坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形中, 的中点,连接,过点于点,连接,已知.

(1)求证:

(2)若,求的长度;

(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3x2+1(xR),其中a>0.

(1)若a=1,求曲线yf(x)在点(2,f(2))处的切线方程;

(2)若在区间上,f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市决定在其经济开发区一块区域进行商业地产开发,截止2015年底共投资百万元用于餐饮业和服装业,2016年初正式营业,经过专业经济师预算,从2016年初至2019年底的四年间,在餐饮业利润为该业务投资额的,在服装业可获利该业务投资额的算术平方根.

(1)该市投资资金应如何分配,才能使这四年总的预期利润最大?

(2)假设自2017年起,该市决定对所投资的区域设施进行维护保养,同时发放员工奖金,方案如下:2017年维护保养费用百万元,以后每年比上一年增加百万元;2017年发放员工奖金共计百万元,以后每年的奖金比上一年增加.若该市投资成功的标准是:从2016年初到2019的底,这四年总的预期利润中值(预期最大利润与最小利润的平均数)不低于总投资额的,问该市投资是否成功?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,

规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,

得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(1)请完成上面的列联表;

(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为成绩与班级有关系

(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥中, , △是斜边的等腰直角三角形, 以下结论中: ① 异面直线所成的角为;② 直线平面;③ 面;④ 点到平面的距离是. 其中正确结论的序号是 ____________________ .

查看答案和解析>>

同步练习册答案