精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=$\frac{{e}^{x}+b}{{e}^{x}}$(b∈R)f(x)在点(0,f(0))处的切线为x-y=0.
(1)求证:当x>-1时,f(x)≥$\frac{x}{x+1}$;
(2)若当x≥0时f(x)≤$\frac{x}{ax+1}$恒成立,求实数a的取值范围.

分析 (1)函数f(x)=$\frac{{e}^{x}+b}{{e}^{x}}$=1+$\frac{b}{{e}^{x}}$,f′(x)=-$\frac{b}{{e}^{-x}}$.利用f′(0)=-b=1,解得b.可得f(x)=1-$\frac{1}{{e}^{x}}$,要证明当x>-1时,f(x)≥$\frac{x}{x+1}$,即证明ex≥x+1,令g(x)=ex-x-1,(x>-1).利用当时研究其单调性极值即可得出.
(2)当x≥0时,不等式0≤f(x)=$1-\frac{1}{{e}^{x}}$≤$\frac{x}{ax+1}$,当x≥0,1-e-x∈[0,1),可得$\frac{x}{ax+1}$≥0,必须a≥0.于是不等式$1-\frac{1}{{e}^{x}}$≤$\frac{x}{ax+1}$恒成立?(ax+1)(1-e-x)-x≤0在[0,+∞)上恒成立.令u(x)=(ax+1)(1-e-x)-x,则u′(x)=a(1-e-x)+(ax+1)e-x-1,令v(x)=a(1-e-x)+(ax+1)e-x-1,v′(x)=e-x(2a-ax-1).对a分类讨论:当a=0时,容易验证.当a>0时,v′(x)=-ae-x$(x-\frac{2a-1}{a})$.对a分类讨论:i)若2a-1≤0,即$0<a≤\frac{1}{2}$时,v′(x)≤0,即可得出ii)若2a-1>0,即a$>\frac{1}{2}$时,当$0<x<\frac{2a-1}{a}$时,v′(x)>0舍去.

解答 (1)证明:∵f(x)在点(0,f(0))处的切线为x-y=0.可知:切线的斜率为1.
函数f(x)=$\frac{{e}^{x}+b}{{e}^{x}}$=1+$\frac{b}{{e}^{x}}$,f′(x)=-$\frac{b}{{e}^{-x}}$.
∴f′(0)=-b=1,解得b=-1.
∴f(x)=1-$\frac{1}{{e}^{x}}$,
要证明当x>-1时,f(x)≥$\frac{x}{x+1}$,即证明ex≥x+1,
令g(x)=ex-x-1,(x>-1).
g′(x)=ex-1,
当x>0时,g′(x)>0,此时函数g(x)单调递增;当0>x>-1时,g′(x)<0,此时函数g(x)单调递减.
∴当x=0时,函数g(x)取得极小值即最小值,g(0)=0,
∴g(x)≥0,
∴ex≥x+1.
(2)解:当x≥0时,不等式0≤f(x)=$1-\frac{1}{{e}^{x}}$≤$\frac{x}{ax+1}$,
∵x≥0,1-e-x∈[0,1),∴$\frac{x}{ax+1}$≥0,
若x=0,则a∈R.若x>0,则ax+1>0,即a>-$\frac{1}{x}$恒成立,则a≥0.
于是不等式$1-\frac{1}{{e}^{x}}$≤$\frac{x}{ax+1}$恒成立?(ax+1)(1-e-x)-x≤0在[0,+∞)上恒成立.
令u(x)=(ax+1)(1-e-x)-x,u(0)=0,则u′(x)=a(1-e-x)+(ax+1)e-x-1,
令v(x)=a(1-e-x)+(ax+1)e-x-1,v′(x)=e-x(2a-ax-1),v(0)=0.
①当a=0时,v′(x)=-e-x<0,∴v(x)=u′(x)≤v(0)=0.
∴u(x)在[0,+∞)上单调递减,∴u(x)≤u(0)=0,∴f(x)≤g(x)在[0,+∞)上恒成立.
②当a>0时,v′(x)=-ae-x$(x-\frac{2a-1}{a})$.
i)若2a-1≤0,即$0<a≤\frac{1}{2}$时,v′(x)≤0,∴v(x)=u′(x)≤v(0)=0.
∴u(x)在[0,+∞)上单调递减,∴u(x)≤u(0)=0,∴f(x)≤g(x)在[0,+∞)上恒成立.
ii)若2a-1>0,即a$>\frac{1}{2}$时,当$0<x<\frac{2a-1}{a}$时,v′(x)>0,∴v(x)在$(0,\frac{2a-1}{a})$上单调递减,
∴v(x)=u′(x)>v(0)=0.
∴u(x)在$(0,\frac{2a-1}{a})$上单调递增,∴u(x)>u(0)=0,∴f(x)>g(x),不满足条件,舍去.
综上可得:当x≥0时,f(x)≤$\frac{x}{ax+1}$恒成立的实数a的取值范围是$[0,\frac{1}{2}]$.

点评 本题考查了利用导数研究其单调性极值与最值、恒成立问题等价转化方法,考查了分类讨论方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数y=sinx•$\sqrt{3}$cosx(0≤x<2π)取最大值时,x=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{{{5^x}-m+1}}{{{5^x}+1}}$为奇函数.
(1)求实数m的值;
(2)判断函数的单调性,并用函数的单调性定义证明;
(3)求满足-$\frac{2}{3}<f(x-1)<f(\frac{12}{13})$的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:x≤1,命题q:$\frac{1}{x}$≥1,则命题p是命题q的(  )
A.充要条件B.既不充分也不必要条件
C.充分不必要条件D.必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知二面角α-l-β,空间中有一点A,且AC⊥α于C,AB⊥β于B,若∠BAC=75°,则二面角α-l-β的大小为75°或105°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=alnx+x2(a为实常数)
(1)当x∈[1,e]时,讨论方程f(x)=0的根的个数;
(2)若a>0,且对任意的x1,x2∈(0,$\frac{1}{2}$],都有|f(x1)-f(x2)|≤|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,PE⊥DB,垂足为E.则PE的长为$\frac{13}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.小颖看到一卷卫生纸上标明了重量,她想验证一下,就来到物理实验室,用天平称后,正好是180克.接下来她又想知道这卷卫生纸的长度和单层卫生纸的厚度,但又不想将卫生纸全都展开.请你利用物理实验室和包装上的信息,为小颖设计一种实现想法的方案.
产品名称:180克维达卫生纸
产品编号:v4131
主要原料:100%原生木浆
执行标准:GB20810   优等品(合格)
生产日期:见包装     保质期:三年
规格:3层   138mm×104mm/节  净含量:180克

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.过圆(x-1)2+(y-2)2=4外一点(-3,0)引圆的切线,求切线方程.

查看答案和解析>>

同步练习册答案