已知函数
(1)求函数的值域;
(2)若时,函数的最小值为,求的值和函数 的最大值。
(1);(2)或,当时f(x)的最大值为;当时f(x)的最大值为。
解析试题分析:(1)本题通过换元转化为二次函数最值问题,再利用单调性求最值,从而得到函数值域;(2)某区间上的二次函数最值问题,要进行配方,确定对称轴,弄清单调性,才能求解.如果对称轴不确定,要进行分类讨论来解决.
试题解析:设 2分
(1) 在上是减函数
, 所以值域为 . 6分
(2)①当时, 由
所以在上是减函数,
或(不合题意舍去) 8分
当时有最大值,
即 10分
②当时,,在上是减函数,
,或(不合题意舍去)
或(舍去) 12分
当时y有最大值,即
综上,或,当时f(x)的最大值为;
当时f(x)的最大值为。 14分
考点:1、指数函数最值;2、分类讨论思想.
科目:高中数学 来源: 题型:解答题
已知函数的图像在点处的切线方程为.
(Ⅰ)求实数的值;
(Ⅱ)求函数在区间上的最大值;
(Ⅲ)若曲线上存在两点使得是以坐标原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数图象上一点处的切线方程为.
(1)求的值;
(2)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底数);(3)令,若的图象与轴交于(其中),的中点为,求证:在处的导数
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数.
(1)求函数的单调区间;
(2)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,请说明理由;
(3)关于的方程在上恰有两个相异实根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com