精英家教网 > 高中数学 > 题目详情

【题目】以直角坐标系的原点为极点, 轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线的参数方程为参数)曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设直线与曲线相交于两点,当变化时,求的最小值.

【答案】(1)曲线C的直角坐标方程为 (2)当时, 的最小值为4.

【解析】试题分析】(1)依据题设先将直线的参数方程化为直角坐标方程,再运用直角坐标与极坐标的互化公式将曲线的极坐标方程化为直角坐标方程;(2)将直线的参数方程代入曲线的直角坐标方程, 得,

AB两点对应的参数分别为, 则, , 然后求出 算得当时, 的最小值为4.

解: (1) 由消去,

所以直线的普通方程为.

, 得,

代入上式, 得,

所以曲线C的直角坐标方程为.

(2) 将直线l的参数方程代入, 得,

AB两点对应的参数分别为,

, ,

所以 .

时, 的最小值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】f(x)=(m﹣1)x2+2mx+3为偶函数,则f(x)在区间(2,5)上是(
A.减函数
B.增函数
C.有增有减
D.增减性不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣a)(x+2)为偶函数,若g(x)= ,则a= , g[g(﹣ )]=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线 交椭圆于 两不同的点.

(1)求椭圆的方程;

(2)若直线不过点,求证:直线 轴围成等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄(单位:岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄”45岁为分界点,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在的概率.

参考数据如下:

附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值: (其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点 ,则下面说法正确的是( )

A. B. C. D. 有极小值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=loga(3﹣ax)(a>0,a≠1)
(1)当a=3时,求函数f(x)的定义域;
(2)若g(x)=f(x)﹣loga(3+ax),请判定g(x)的奇偶性;
(3)是否存在实数a,使函数f(x)在[2,3]递增,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)当x为何值时,f(logax)有最小值?求出该最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2 . (Ⅰ)判断f(x)奇偶性并证明;
(Ⅱ)用单调性定义证明函数g(x)= 在函数f(x)定义域内单调递增,并判断f(x)=log2 在定义域内的单调性.

查看答案和解析>>

同步练习册答案