分析 (Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,故BC=$\sqrt{3}$,AC=2,由此能求出四棱锥P-ABCD的体积V.
(Ⅱ)由AE⊥PC,AE⊥CD,然后证明AE⊥平面PCD,由此能证明平面ADE⊥平面PCD.
解答 解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,
∴BC=$\sqrt{3}$,AC=2…(2分)
在Rt△ACD中,AC=2,∠CAD=60°,CD=2$\sqrt{3}$…(4分)
∵S四边形ABCD=$\frac{1}{2}$AB•BC+$\frac{1}{2}$AC•CD=$\frac{1}{2}$×1×$\sqrt{3}$+$\frac{1}{2}$×2×2$\sqrt{3}$=$\frac{5}{2}$$\sqrt{3}$,
则V=$\frac{1}{3}$×$\frac{5}{2}$$\sqrt{3}$×2=$\frac{5\sqrt{3}}{3}$…(6分)
证:(Ⅱ)∵PA⊥平面ABCD,
∴PA⊥CD…(7分)
又直线PC与平面ABCD所成角为45°,
∴AC=PA,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,AB=2.
∴AC=4,PA=4,E为PC的中点,
∴AE⊥PC
PA⊥平面ABCD,∠ACD=90°
∴CD⊥平面PAC,…(8分),AE?平面PAC,∴AE⊥CD
PC∩CD=C,∴AE⊥平面PCD…(10分),
∵AE?平面AEF,
∴平面ADE⊥平面PCD…(12分
点评 本题考查棱锥的体积的求法,考查平面与平面垂直的证明,解题时要认真审题,注意合理地化立体问题为平面问题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
喜爱运动 | 不喜爱运动 | 总计 | |
男 | 10 | 18 | |
女 | 5 | 12 | |
总计 | 30 |
P(x2≥x0) | 0.40 | 0.25 | 0.10 | 0.010 |
x0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,4] | B. | (2,4) | C. | [2,4) | D. | (4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | AC⊥BD | |
B. | 若该四面体的各顶点在同一球面上,则该球的体积为3π | |
C. | 直线AB与平面BCD所成的角的余弦值为$\frac{\sqrt{3}}{3}$ | |
D. | 该四面体的体积为$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{3}$ | B. | -$\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 直线与圆相切 | B. | 直线与圆相交但不过圆心 | ||
C. | 直线与圆相离 | D. | 直线过圆心 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com