精英家教网 > 高中数学 > 题目详情

【题目】某公司为了解用户对其产品的满意度,从某地区随机调查了100个用户,得到用户对产品的满意度评分频率分布表如下:

组别

分组

频数

频率

第一组

10

0.1

第二组

20

0.2

第三组

40

0.4

第四组

25

0.25

第五组

5

0.05

合计

100

1

1)根据上面的频率分布表,估计该地区用户对产品的满意度评分超过70分的概率;

2)请由频率分布表中数据计算众数、中位数,平均数,根据样本估计总体的思想,若平均分低于75分,视为不满意.判断该地区用户对产品是否满意?

【答案】(1)0.7(2)样本众数约为75,中位数为75, 平均数约,该地区用户对产品是不满意的

【解析】

1)根据题中数据,直接计算即可得出结果;

2)根据众数、中位数,平均数的概念,结合题中数据直接计算,即可得出结果.

1)由题中数据可得:该地区用户对产品的满意度评分超过70分的概率为

2)由题中数据可得:满意度评分在的频率最高,因此样本众数约为75

设中位数约为,则由题意可得:,得

即中位数为75

又各组中间值分别为5565758595

故平均值约

∴该地区用户对产品是不满意的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的各棱长均为2,侧面 底面,侧棱与底面所成的角为

(Ⅰ)求直线与底面所成的角;

(Ⅱ)在线段上是否存在点,使得平面平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一”期间,某淘宝店主对其商品的上架时间(小时)和销售量(件)的关系作了统计,得到了如下数据并研究.

上架时间

2

4

6

8

10

12

销售量

64

138

205

285

360

430

(1)求表中销售量的平均数和中位数;

(2)① 作出散点图,并判断变量是否线性相关?若研究的方案是先根据前5组数据求线性回归方程,再利用第6组数据进行检验,求线性回归方程

②若根据①中线性回归方程得到商品上架12小时的销售量的预测值与检测值不超过3件,则认为得到的线性回归方程是理想的,试问:①中的线性回归方程是否理想.

附:线性回归方程中, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保护环境,某工厂在政府部门的支持下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y(万元)与处理量x(吨)之间的函数关系可近似地表示为:,且每处理一吨二氧化碳可得价值为20万元的某种化工产品.

(1)当时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?

(2)当处理量为多少吨时,每吨的平均处理成本最少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题对任意实数,不等式恒成立;命题方程表示焦点在轴上的双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题:为真命题,且为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20172月底,90多所自主招生试点高校将陆续出台2017年自主招生简章,某校高三年级选取了在期中考试中成绩优异的100名学生作为调查对象,对是否准备参加2017年的自主招生考试进行了问卷调查,其中准备参加”“不准备参加待定的人数如表:

准备参加

不准备参加

待定

男生

30

6

15

女生

15

9

25

(1)在所有参加调查的同学中,在三种类型中用分层抽样的方法抽取20人进行座谈交流,则在准备参加”“不准备参加待定的同学中应各抽取多少人?

(2)准备参加的同学中用分层抽样方法抽取6,从这6人中任意抽取2,求至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】九章算术中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”现有一阳马,其正视图和侧视图是如图所示的直角三角形若该阳马的顶点都在同一个球面上,且该球的表面积为,则该“阳马”的体积为__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】)计算:

①若是椭圆长轴的两个端点,,则______

②若是椭圆长轴的两个端点,,则______

③若是椭圆长轴的两个端点,,则______

)观察①②③,由此可得到:若是椭圆长轴的两个端点,为椭圆上任意一点,则?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店经营的消费品进价每件14元,月销售量(百件)与销售价格p(元)的关系如下图,每月各种开支2000.

(1)写出月销售量(百件)与销售价格p(元)的函数关系;

(2)写出月利润y(元)与销售价格p(元)的函数关系:

(3)当商品价格每件为多少元时,月利润最大?并求出最大值.

查看答案和解析>>

同步练习册答案