【题目】正项数列:,满足:是公差为的等差数列,是公比为2的等比数列.
(1)若,求数列的所有项的和;
(2)若,求的最大值;
(3)是否存在正整数,满足?若存在,求出的值;若不存在,请说明理由.
【答案】(1)84;(2)1033;(3)存在,
【解析】
(1)由题意可得:, 即为:2,4,6,8,10,12,14,16,8,4; 可得的值;
(2)由题意可得,故有;即,即必是2的整数幂,要最大,必需最大,,可得出的最大值;
(3)由是公差为的等差数列,是公比为2的等比数列,可得与,可得k与m的方程,一一验算k的值可得答案.
解:(1)由已知,
故为:2,4,6,8,10,12,14,16;公比为2,则对应的数为2,4,8,16,
从而即为:2,4,6,8,10,12,14,16,8,4;
此时
(2)是首项为2,公差为2 的等差数列,
故,从而,
而首项为2,公比为2的等比数列且,
故有;即,即必是2的整数幂
又,要最大,必需最大,,故的最大值为,
所以,即的最大值为1033
(3)由数列是公差为的等差数列知,,而
是公比为2的等比数列,则,故,即,
又,,则
,即,则,即
显然,则,所以,将,代入验证知,
当时,上式右端为8,等式成立,此时,
综上可得:当且仅当时,存在满足等式
科目:高中数学 来源: 题型:
【题目】已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=.
(1)求直线CD的方程;
(2)求圆P的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.
(1)求直方图中的值;
(2)求辆纯电动汽车续驶里程的中位数;
(3)若从续驶里程在的车辆中随机抽取辆车,求其中恰有一辆车的续驶里程为的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有四座城市、、、,其中在的正东方向,且与相距,在的北偏东方向,且与相距;在的北偏东方向,且与相距,一架飞机从城市出发以的速度向城市飞行,飞行了,接到命令改变航向,飞向城市,此时飞机距离城市有( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,分别为椭圆的左、右焦点,点在椭圆上,且轴,的周长为6.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点的直线与椭圆交于,两点,设为坐标原点,是否存在常数,使得恒成立?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,天花板上挂着3串玻璃球,射击玻璃球规则:每次击中1球,每串中下面球没击中,上面球不能击中,则把这6个球全部击中射击方法数是( )
A.78B.60C.48D.36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设x=1与x=2是函数f(x)=aln x+bx2+x的两个极值点.
(1)试确定常数a和b的值;
(2)判断x=1,x=2是函数f(x)的极大值点还是极小值点,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com