精英家教网 > 高中数学 > 题目详情

【题目】如图,已知六棱锥的底面是正六边形,平面,给出下列结论:

②直线平面

③平面平面

④异面直线所成角为

⑤直线与平面所成角的余弦值为.

其中正确的有_______(把所有正确的序号都填上)

【答案】①③④⑤

【解析】

设出几何体的边长,根据正六边形的性质,线面垂直的判定定理,线面平行的判定定理,面面垂直的判定定理,异面直线所成角,线面角有关知识,对五个结论逐一分析,由此得出正确结论的序号.

设正六边形长为,则.根据正六边形的几何性质可知,由平面,所以平面,所以,故①正确.由于,而,所以直线平面不正确,故②错误.易证得,所以平面,所以平面平面,故③正确.由于,所以是异面直线所成角,在中,,故,也即异面直线所成角为,故④正确.连接,则,由①证明过程可知平面,所以平面,所以是所求线面角,在三角形中,,由余弦定理得,故⑤正确.综上所述,正确的序号为①③④⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某中学高三学生共有800人参加了数学与英语水平测试,现学校决定利用随机数表法从中抽取100人的成绩进行统计,先将800人按001,002,…,800进行编号.

如果从第8行第7列的数开始从左向右读,(下面是随机数表的第7行至第9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 26

83 92 53 16 59 16 92 75 35 62 98 21 50 71 75 12 86 73 63 01

58 07 44 39 13 26 33 21 13 42 78 64 16 07 82 52 07 44 38 15

则最先抽取的2个人的编号依次为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是直线上的一动点,过点作圆M的切线,切点为

)当切线PA的长度为时,求点的坐标;

)若的外接圆为圆,试问:当运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;

)求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在奥运知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲答对这道题的概率是,甲、乙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.设每人回答问题正确与否相互独立的.

(Ⅰ)求乙答对这道题的概率;

(Ⅱ)求甲、乙、丙三人中,至少有一人答对这道题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,分别为内角所对的边,且满足

(Ⅰ)求角的大小;

(Ⅱ)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为 ,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0 , y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF||BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)若函数在区间上单调递增,求实数的取值范围;

(Ⅲ)设函数,其中.证明:的图象在图象的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC= ,AB=3 ,AD=3,则BD的长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的极值;

(2)若在区间内有唯一的零点,求的取值范围.

查看答案和解析>>

同步练习册答案