精英家教网 > 高中数学 > 题目详情

【题目】过去大多数人采用储蓄的方式将钱储蓄起来,以保证自己生活的稳定,考虑到通货膨胀的压力,如果我们把所有的钱都用来储蓄,这并不是一种很好的方式,随着金融业的发展,普通人能够使用的投资理财工具也多了起来,为了研究某种理财工具的使用情况,现对年龄段的人员进行了调查研究,将各年龄段人数分成5组:,并整理得到频率分布直方图:

1)求图中的a值;

2)采用分层抽样的方法,从第二组、第三组、第四组中共抽取8人,则三个组中,各抽取多少人;

3)由频率分布直方图,求所有被调查人员的平均年龄.

【答案】(1)(2)三个组依次抽取的人数为242(3)被调查人员的平均年龄为47

【解析】

1)根据频率之和为,将每组对应的纵坐标相加后,再乘以组距等于,得到的值;(2)根据第二、三、四组的频率之比得到分层抽样的比例,再得到每组所抽取的人数,得到答案;(3)利用每组中间值和每组的频率得到所有被调查人员的平均年龄.

解:(1)由频率分布直方图的性质可得

解得

2)第二组、第三组、第四组的频率比为

因为共抽取人,

所以三个组依次抽取的人数为

3)根据频率分布直方图的性质,

每组的中间值乘以对应的频率再相加,得到总体的平均值

∴被调查人员的平均年龄为岁.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数gx=ax2﹣2ax+1+ba0)在区间[03]上有最大值4和最小值1.设fx=

1)求ab的值;

2)若不等式f2x﹣k2x≥0x∈[﹣11]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知yf(x)的导函数f′(x)的图像如图所示,则下列结论正确的是(  )

A.f(x)在(-3,-1)上先增后减B.x=-2是f(x)极小值点

C.f(x)在(-1,1)上是增函数D.x=1是函数f(x)的极大值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,对于函数,称向量为函数的伴随向量,同时称函数为向量的伴随函数.

1)设函数,试求的伴随向量

2)记向量的伴随函数为,求当的值;

3)由(1)中函数的图象(纵坐标不变)横坐标伸长为原来的2倍,再把整个图象向右平移个单位长度得到的图象,已知,问在的图象上是否存在一点P,使得.若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为为椭圆上一动点(异于左、右顶点),若的周长为,且面积的最大值为.

(1)求椭圆的方程;

(2)设是椭圆上两动点,线段的中点为的斜率分别为 为坐标原点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是26;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④102日到106日认购量的分散程度比成交量的分散程度更大.则上述判断错误的个数为(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际象棋比赛中.胜局一得1分,平一局得0.5分,负一局得0分。今有8名选手进行单循环比赛(每两人均赛一局),赛完后、发现各选手的得分均不相同,当按得分由大到小排列好名次后,第四名选手得4.5分,第二名的得分等于最后四名选手得分总和.问前三名选手各得多少分?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河南豫南九校高三下学期第一次联考设函数

I)当时, 恒成立,求的范围;

II)若处的切线为,且方程恰有两解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①命题,则的否命题为,则

的必要不充分条件;

命题,使得的否定是:,均有

④命题,则的逆否命题为真命题

其中所有正确命题的序号是________.

查看答案和解析>>

同步练习册答案