精英家教网 > 高中数学 > 题目详情

【题目】如图,在矩形ABCD中,以A为圆心,AD为半径的圆交ACABME.CE的延长线交⊙AFCM=2,AB=4.

(1)求⊙A的半径;

(2)求CE的长和△AFC的面积

【答案】(1)3(2)

【解析】试题分析:(1)根据勾股定理得关于半径关系式,解得半径;(2)由直角三角形可得CE的长,由切割线定理可得CF,根据解三角形可得三角形面积

试题解析:解:(1)∵四边形ABCD为矩形,AB=4,∴CD=4.

在Rt△ACD中,AC2CD2AD2

∴(2+AD)2=42AD2.

解得:AD=3,即⊙A的半径为3.

(2)过点AAGEF于点G

BC=3,

BEABAE=4-3=1,

CE

.

∵∠ADC=90°,

CD为⊙A的切线,

CE·CFCD2

CF.

又∠B=∠AGE=90°,∠BEC=∠GEA

∴△BCE∽△GAE

.∴AG

SAFCCF·AG××.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域是D,若存在常数m、M,使得m≤f(x)≤M对任意x∈D成立,则称函数f(x)是D上的有界函数,其中m称为函数f(x)的下界,M称为函数f(x)的上界;特别地,若“=”成立,则m称为函数f(x)的下确界,M称为函数f(x)的上确界. (Ⅰ)判断 是否是有界函数?说明理由;
(Ⅱ)若函数f(x)=1+a2x+4x(x∈(﹣∞,0))是以﹣3为下界、3为上界的有界函数,求实数a的取值范围;
(Ⅲ)若函数 ,T(a)是f(x)的上确界,求T(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= cos(2x﹣ ).
(1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
(2)若x∈[ ],求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对任意平面向量 =(x,y),把 绕其起点沿逆时针方向旋转θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ得到点P.
(1)已知平面内点A(2,3),点B(2+2 ,1).把点B绕点A逆时针方向旋转 角得到点P,求点P的坐标.
(2)设平面内曲线C上的每一点绕坐标原点沿顺时针方向旋转 后得到的点的轨迹方程是曲线y= ,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设z1=2x+1+(x2﹣3x+2)i,z2=x2﹣2+(x2+x﹣6)i(x∈R).
(1)若z1是纯虚数,求实数x的取值范围;
(2)若z1>z2 , 求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0, )的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设锐角△ABC的三个内角为A,B,C,其中角B的大小为 ,则cosA+sinC的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1求函数的单调递增区间;

2设函数函数

恒成立求实数的取值范围;

证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下的列联表:

喜欢该项运动

不喜欢该项运动

总计

40

20

60

20

30

50

总计

60

50

110

由公式,算得

附表:

0.025

0.01

0.005

5.024

6.635

7.879

参照附表,以下结论正确的是( )

A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

B. 在犯错语的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

C. 有99%以上的把握认为“爱好该项运动与性别无关”

D. 有99%以上的把握认为“爱好该项运动与性别有关”

查看答案和解析>>

同步练习册答案