精英家教网 > 高中数学 > 题目详情
13.设点P在双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右支上,双曲线的左、右焦点分别为F1,F2,若|PF1|=4|PF2|,则双曲线离心率的取值范围是(  )
A.$({1,\frac{5}{3}}]$B.(1,2]C.$[{\frac{5}{3},+∞})$D.[2,+∞)

分析 由双曲线的定义可得|PF1|-|PF2|=3|PF2|=2a,再根据点P在双曲线的右支上,可得|PF2|≥c-a,从而求得此双曲线的离心率e的取值范围.

解答 解:∵|PF1|=4|PF2|,
∴由双曲线的定义可得|PF1|-|PF2|=3|PF2|=2a,
∴|PF2|=$\frac{2}{3}$a,
∵点P在双曲线的右支上,
∴|PF2|≥c-a,
∴$\frac{2}{3}$a≥c-a,即$\frac{5}{3}$a≥c,
∴e=$\frac{c}{a}$≤$\frac{5}{3}$,
∵e>1,
∴1<e≤$\frac{5}{3}$,
∴双曲线的离心率e的取值范围为(1,$\frac{5}{3}$].
故选:A.

点评 本题考查双曲线的定义和标准方程,以及双曲线的简单性质的应用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在等差数列{an}中,S10=120,那么a1+a10的值是(  )
A.12B.24C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某工厂要生产体积为定值V的漏斗,现选择半径为R的圆形马口铁皮,截取如图所示的扇形,焊制成漏斗.
(1)若漏斗的半径为$\frac{\sqrt{3}}{2}$R,求圆形铁皮的半径R;
(2)这张圆形铁皮的半径R至少是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆$\frac{x^2}{5}+\frac{y^2}{4}=1$的焦距是(  )
A.$2\sqrt{3}$B.$\sqrt{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=x3-3x2+m在区间[-1,1]上的最大值是2,则常数m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛物线y2=8x的焦点到直线$\sqrt{3}$x-y=0的距离是(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|x2+2x<0},B={x|($\frac{1}{2}$)x-2≥0},则A∩B=(  )
A.(-2,-1)B.(-1,0)C.(-2,-1]D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在△ABC中,H为BC上异于B,C的任一点,M为AH的中点,若$\overrightarrow{AM}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ+μ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知条件p:(x-m)(x-m-3)>0;条件q:x2+3x-4<0.若p是q的必要不充分条件,则实数m的取值范围是(  )
A.(-∞,-7)∪(1,+∞)B.(-∞,-7]∪[1,+∞)C.(-7,1)D.[-7,1]

查看答案和解析>>

同步练习册答案