【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥AB,PA⊥AD.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)已知PA=AD,点E在PD上,且PE:ED=2:1.
(ⅰ)若点F在棱PA上,且PF:FA=2:1,求证:EF∥平面ABCD;
(ⅱ)求二面角D﹣AC﹣E的余弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ)(ⅰ)证明见解析,(ⅱ).
【解析】
(Ⅰ)利用线面垂直的判定定理即可证出.
(Ⅱ)(ⅰ)利用线面平行的判定定理即可证出;
(ⅱ)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,分别求出平面ACE的一个法向量以及平面ADC的一个法向量,利用空间向量的数量积即可求出.
证明:(Ⅰ)∵PA⊥AB,PA⊥AD,AB∩AD=A,
∴PA⊥平面ABCD.
(Ⅱ)(ⅰ)PA=AD,点E在PD上,且PE:ED=2:1.
点F在棱PA上,且PF:FA=2:1,
∴EF∥AD,
∵EF平面ABCD,AD平面ABCD,
∴EF∥平面ABCD.
解:(ⅱ)∵在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥AB,PA⊥AD,
PA=AD,点E在PD上,且PE:ED=2:1.
∴以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
设PA=AD=3,则A(0,0,0),C(3,3,0),E(0,2,1).
(3,3,0),(0,2,1),
设平面ACE的法向量(x,y,z),
则,取x=1,得(1,﹣1,2),
平面ADC的法向量(0,0,1),
设二面角D﹣AC﹣E的平面角为α,
则cosα.
∴二面角D﹣AC﹣E的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知圆:,动点,线段与圆相交于点,线段的长度与点到轴的距离相等.
(1)求动点的轨迹的方程;
(2)过点的直线交曲线于,两点,交圆于,两点,其中在线段上,在线段上,求的最小值及此时直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
则下面结论中不正确的是
A. 新农村建设后,种植收入减少
B. 新农村建设后,其他收入增加了一倍以上
C. 新农村建设后,养殖收入增加了一倍
D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( )
A. 互联网行业从业人员中后占一半以上
B. 互联网行业中从事技术岗位的人数超过总人数的
C. 互联网行业中从事运营岗位的人数后比前多
D. 互联网行业中从事运营岗位的人数后比后多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校300名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟).
平均每天锻炼的时间/分钟 | ||||||
总人数 | 34 | 51 | 59 | 66 | 65 | 25 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 40 | 160 | |
合计 |
(2)通过计算判断,是否能在犯错误的概率不超过0.05的前提下认为“锻炼达标”与性别有关?
参考公式:,其中.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术;蕴含了极致的数学美和丰富的传统文化信息,现有一幅剪纸的设计图,其中的4个小圆均过正方形的中心,且内切于正方形的两邻边.若在正方形内随机取一点,则该点取自黑色部分的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆 的长轴,长为4,过椭圆的右焦点作斜率为()的直线交椭圆于、两点,直线,的斜率之积为.
(1)求椭圆的方程;
(2)已知直线,直线,分别与相交于、两点,设为线段的中点,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com