精英家教网 > 高中数学 > 题目详情

(本小题满分12分)设为奇函数,a为常数。
(1)求a的值;
(2)证明在区间上为增函数;
(3)若对于区间上的每一个的值,不等式恒成立,求实数m  的取值范围。

(1);(2)见解析;(3)

解析试题分析:(1)是奇函数,定义域关于原点对称,由,令,得。   ………………4分
(2)令,设任意,则是减函数,又为减函数,上为增函数。   ……………8分
(3)由题意知时恒成立,令由(2)知上为增函数,又上也是增函数,上为增函数,最小值为。故m的范围是。…12分
考点:函数的奇偶性;对数函数的图像与性质的综合应用。
点评:解决恒成立问题常用变量分离法,变量分离法主要通过两个基本思想解决恒成立问题, 思路1:上恒成立;思路2: 上恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)设,如果过点可作曲线的三条切线,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知处有极值,其图象在处的切线与直线平行.
(1)求函数的单调区间;
(2)若时,恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设为实数,函数,.
(1)求的单调区间与极值;
(2)求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中常数 .
(1)当时,求函数的极大值;
(2)试讨论在区间上的单调性;
(3)当时,曲线上总存在相异两点,
,使得曲线在点处的切线互相平行,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:函数,其中.
(Ⅰ)若的极值点,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)若上的最大值是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数f(x)=x3-ax2-3x.
(1)若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度(单位:m/s)紧急刹车至停止。求:
(I)从开始紧急刹车到火车完全停止所经过的时间;
(Ⅱ)紧急刹车后火车运行的路程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知函有极值,且曲线处的切线斜率为3.
(1)求函数的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函数有三个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案