精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,焦距为,斜率为k的直线l与椭圆M有两个不同的交点AB

1)求椭圆M的方程;

2)设P(﹣20),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D,若CD与点共线,求斜率k的值.

【答案】1 22

【解析】

1)根据椭圆的离心率公式即可求得的值,即可求得的值,求得椭圆方程;

2)求得直线的方程,代入椭圆方程,即可根据韦达定理即可求得点坐标,同理求得点坐标,即可求得共线,根据向量的共线定理,即可求得直线的斜率.

解:(1)由题意可知:,则

椭圆的离心率,则

椭圆的标准方程为

2)设

设直线的斜率,直线的方程为

联立,消去整理得

代入上式得,整理得

,则

,同理可得:

,则

与点共线可得共线,

整理得

则直线的斜率

的值为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

1为偶函数,试判断的奇偶性;

2)若方程有两个不相等的实根,当时判断上的单调性;

3)当时,问是否存在x的值,使满足的任意实数a,不等式恒成立?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象的顶点坐标为,且过坐标原点O,数列的前n项和为,点()在二次函数的图象上.

(1)求数列的表达式;

(2)设(),数列的前n项和为,若恒成立,求实数m的取值范围;

(3)在数列中是否存在这样的一些项,,,,…,…(),这些项能够依次构成以为首项,q(,)为公比的等比数列?若存在,写出关于k的表达式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,对于点,定义变换:将点变换为点,使得其中.这样变换就将坐标系内的曲线变换为坐标系内的曲线.则四个函数,,,在坐标系内的图象,变换为坐标系内的四条曲线(如图)依次是

A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是各项均为非零实数的数列的前n项和,给出如下两个命题上:命题p是等差数列;命题q:等式对任意恒成立,其中kb是常数.

1)若pq的充分条件,求kb的值;

2)对于(1)中的kb,问p是否为q的必要条件,请说明理由;

3)若p为真命题,对于给定的正整数n和正数M,数列满足条件,试求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德阳中学数学竞赛培训共开设有初等代数、初等几何、初等数论和微积分初步共四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格,现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同,(见下表),且每一门课程是否合格相互独立,


初等代数

初等几何

初等数论

微积分初步

合格的概率





1)求甲同学取得参加数学竞赛复赛的资格的概率;

2)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求的分布列及期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx.

1)求函数y=fx)的单调区间;

2)若曲线y=fx)与直线ybbR)有3个交点,求实数b的取值范围;

3)过点P(﹣10)可作几条直线与曲线y=fx)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的椭圆和抛物线有相同的焦点,椭圆过点,抛物线的顶点为原点.

求椭圆和抛物线的方程;

设点P为抛物线准线上的任意一点,过点P作抛物线的两条切线PAPB,其中AB为切点.

设直线PAPB的斜率分别为,求证:为定值;

若直线AB交椭圆CD两点,分别是的面积,试问:是否有最小值?若有,求出最小值;若没有,请说明理由.

查看答案和解析>>

同步练习册答案