【题目】已知椭圆的离心率为,焦距为,斜率为k的直线l与椭圆M有两个不同的交点A、B.
(1)求椭圆M的方程;
(2)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D,若C、D与点共线,求斜率k的值.
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )
A. 消耗1升汽油,乙车最多可行驶5千米
B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数和.
(1)为偶函数,试判断的奇偶性;
(2)若方程有两个不相等的实根,当时判断在上的单调性;
(3)当时,问是否存在x的值,使满足且的任意实数a,不等式恒成立?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的图象的顶点坐标为,且过坐标原点O,数列的前n项和为,点()在二次函数的图象上.
(1)求数列的表达式;
(2)设(),数列的前n项和为,若对恒成立,求实数m的取值范围;
(3)在数列中是否存在这样的一些项,,,,…,…(),这些项能够依次构成以为首项,q(,)为公比的等比数列?若存在,写出关于k的表达式;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,对于点,定义变换:将点变换为点,使得其中.这样变换就将坐标系内的曲线变换为坐标系内的曲线.则四个函数,,,在坐标系内的图象,变换为坐标系内的四条曲线(如图)依次是
A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是各项均为非零实数的数列的前n项和,给出如下两个命题上:命题p:是等差数列;命题q:等式对任意恒成立,其中k,b是常数.
(1)若p是q的充分条件,求k,b的值;
(2)对于(1)中的k与b,问p是否为q的必要条件,请说明理由;
(3)若p为真命题,对于给定的正整数n和正数M,数列满足条件,试求 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】德阳中学数学竞赛培训共开设有初等代数、初等几何、初等数论和微积分初步共四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格,现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同,(见下表),且每一门课程是否合格相互独立,
课 程 | 初等代数 | 初等几何 | 初等数论 | 微积分初步 |
合格的概率 |
(1)求甲同学取得参加数学竞赛复赛的资格的概率;
(2)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x).
(1)求函数y=f(x)的单调区间;
(2)若曲线y=f(x)与直线y=b(b∈R)有3个交点,求实数b的取值范围;
(3)过点P(﹣1,0)可作几条直线与曲线y=f(x)相切?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的椭圆和抛物线有相同的焦点,椭圆过点,抛物线的顶点为原点.
求椭圆和抛物线的方程;
设点P为抛物线准线上的任意一点,过点P作抛物线的两条切线PA,PB,其中A,B为切点.
设直线PA,PB的斜率分别为,,求证:为定值;
若直线AB交椭圆于C,D两点,,分别是,的面积,试问:是否有最小值?若有,求出最小值;若没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com