精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=\left\{{\begin{array}{l}{{3^x},x>0}\\{x+5,x≤0}\end{array}}\right.$,则f(f(-3))=(  )
A.$\frac{1}{27}$B.2C.-27D.9

分析 由函数$f(x)=\left\{{\begin{array}{l}{{3^x},x>0}\\{x+5,x≤0}\end{array}}\right.$,将x=-3代入可得:f(f(-3))的值.

解答 解:∵函数$f(x)=\left\{{\begin{array}{l}{{3^x},x>0}\\{x+5,x≤0}\end{array}}\right.$,
∴f(f(-3))=f(2)=9,
故选:D

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在锐角三角形中,角A,B,C,对边分别为a,b,c,若27($\frac{b}{a}$+$\frac{a}{b}$)=104cosC,则$\frac{sinC•tanC}{sinA•sinB}$=$\frac{50}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知轴截面是等腰直角三角形的圆锥,若其母线长为2,则此圆锥侧面积为2$\sqrt{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,已知B、C是二面角α-l-β棱上两点AB?α,AB⊥l,CD?β,CD⊥l,AB=BC=1,CD=$\sqrt{3}$,AD=2$\sqrt{2}$,则二面角α-l-β的大小是150°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“tana=2”是“tan2a=-$\frac{4}{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ax2+(2b+1)x-a-2(a,b∈R)
(1)若a=0,当x∈[$\frac{1}{2}$,1]时恒有f(x)≥0,求b的取值范围;
(2)若b=-1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:
(1)($\frac{25}{9}$)${\;}^{\frac{1}{2}}$+30-($\frac{3}{4}$)-1
(2)lg$\sqrt{25}$+lg2-lg10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.方程$\frac{x^2}{5-m}+\frac{y^2}{m+3}=1$表示焦点在y轴上的椭圆,则的m取值范围为1<m<5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在(2x-1)7的二项展开式中,第四项的系数为-560.

查看答案和解析>>

同步练习册答案