精英家教网 > 高中数学 > 题目详情
2.已知函数f(x-1)=x2-4x,则函数f(2x+1)的解析式为4x2-4.

分析 直接利用函数的解析式,求解函数f(2x+1)的解析式即可.

解答 解:函数f(x-1)=x2-4x,
则函数f(2x+1)=f((2x+2)-1)=(2x+2)2-4(2x+2)=4x2-4.
故答案为:4x2-4.

点评 本题考查函数的解析式的求法,正确理解函数的解析式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图所示,在三棱锥D-ABC中,DA⊥AC,DA⊥BC,AC=BC=1,AB=$\sqrt{3}$,AD=$\sqrt{2}$,求异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如表中第一行和第一列都是首项为4,公差为3的等差数列,从第二行开始,以后各行也是等差数列,公差分别为5,7,9,11,13…,记第i行第j列的数为aij,求aij(用i,j表示)
 4 7 1013 1619 22 
 7 12 1722 27 32 37 
 10 17 2431 38 45 52 
 13 22 3140 49 58 67 
 16 27 3849 60 71 82 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)-3f(-x)=2x+6,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={x|-1<x<3},集合B={x|x>2},那么A∩B={x|2<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.根据数列的前几项.写出数列的一个通项公式
$\frac{4}{5}$,$\frac{1}{2}$,$\frac{4}{11}$,$\frac{2}{7}$,…,an=$\frac{4}{3n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.x,y满足约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≥0}\\{3x-y+2≥0}\end{array}\right.$目标函数z=2x+y,则z的取值范围是(  )
A.[-3,3]B.[-3,2]C.[2,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.数列1,0,1,0,…的一个通项公式是(  )
A.${a}_{n}=\frac{1+(-1)^{n}}{2}(n∈{N}_{+})$B.${a}_{n}=\frac{-1+(-1)^{n}}{2}(n∈{N}_{+})$
C.${a}_{n}=\frac{1-(-1)^{n+1}}{2}(n∈{N}_{+})$D.${a}_{n}=\frac{1-(-1)^{n}}{2}(n∈{N}_{+})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若A={x|0≤x≤2},B={x|1<x<3},求A∩B,A∪B并用数轴表示.

查看答案和解析>>

同步练习册答案