精英家教网 > 高中数学 > 题目详情

【题目】时,函数的值域是_________.

【答案】[12]

【解析】:f(x)=sinx+cosx=2(sinx+cosx)=2sin(x+),

≤x≤

≤x+

≤sin(x+)≤1,

函数f(x)的值域为[﹣1,2],

故答案为:[﹣1,2].

型】填空
束】
15

【题目】若点O内,且满足,设的面积, 的面积,则________.

【答案】

【解析】,可得:

延长OA,OB,OC,使OD=2OA,OE=4OB,OF=3OC,

如图所示:

2+3+4=

即O是DEF的重心,

△DOE,△EOF,△DOF的面积相等,

不妨令它们的面积均为1,

AOB的面积为BOC的面积为AOC的面积为

故三角形AOB,BOC,AOC的面积之比依次为: =3:2:4,

.

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x),当x≥0时,
f(x)=
则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为(  )
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量问题,全民关注,有需求就有研究,某科研团队根据工地常用高压水枪除尘原理,制造了雾霾神器﹣﹣﹣雾炮,虽然雾炮不能彻底解决问题,但是能在一定程度上起到防霾、降尘的作用,经过测试得到雾炮降尘率的频率分布直方图:
若降尘率达到18%以上,则认定雾炮除尘有效.

(1)根据以上数据估计雾炮除尘有效的概率;
(2)现把A市规划成三个区域,每个区域投放3台雾炮进行除尘(雾炮之间工作互不影响),若在一个区域内的3台雾炮降尘率都低于18%,则需对该区域后期追加投入20万元继续进行治理,求后期投入费用的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为,再由乙猜甲刚才想的数字,把乙猜的数字记为,且.若,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在区间[﹣2,t](t>﹣2)上的函数f(x)=(x2﹣3x+3)ex(其中e为自然对数的底).
(1)当t>1时,求函数y=f(x)的单调区间;
(2)设m=f(﹣2),n=f(t),求证:m<n;
(3)设g(x)=f(x)+(x﹣2)ex , 当x>1时,试判断方程g(x)=x的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知 ,sinB=cosAsinC,S△ABC=6,P为线段AB上的点,且 ,则xy的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代算书《孙子算经》中有一著名的问题“物不知数”如图1,原题为:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?后来,南宋数学家秦九韶在其著作《数学九章》中对此类问题的解法做了系统的论述,并称之为“大衍求一术”,如图2程序框图的算法思路源于“大衍求一术”执行该程序框图,若输入的a,b分别为20,17,则输出的c=( )

A.1
B.6
C.7
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子里装有7个球,其中有红球4个,编号分别为1,2,3,4;白球3个,编号分别为2,3,4.从袋子中任取4个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的4个球中,含有编号为3的球的概率;
(Ⅱ)在取出的4个球中,红球编号的最大值设为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足a1=1,nSn+1﹣(n+1)Sn= ,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案